

Syllabus

Kursbeschreibung

Titel der Lehrveranstaltung	Bioenergy
Code der Lehrveranstaltung	45535
Zusätzlicher Titel der	
Lehrveranstaltung	
Wissenschaftlich-	ING-IND/24
disziplinärer Bereich	
Sprache	Englisch
Studiengang	Master in Energie-Ingenieurwissenschaften
Andere Studiengänge (gem. Lehrveranstaltung)	
Dozenten/Dozentinnen	Dr. Luca Fiori,
	Luca.Fiori@unibz.it
	https://www.unibz.it/en/faculties/engineering/academic-
	staff/person/33953
Wissensch.	
Mitarbeiter/Mitarbeiterin	
Semester	Zweites Semester
Studienjahr/e	2
KP	6
Vorlesungsstunden	60
Laboratoriumsstunden	0
Stunden für individuelles	90
Studium	
Vorgesehene Sprechzeiten	
Inhaltsangabe	The course focuses on Bioenergy and in particular on the
	exploitation of biomass and organic waste for energy recovery. The
	course encompasses thermochemical energy processes
	(combustion, gasification, pyrolysis, reforming, hydrothermal
	conversion), mechanical and chemical processes (oil extraction and
	trans-esterification), finally biochemical processes (fermentation
	and anaerobic digestion). Emphasis is given to thermochemical

processes and anaerobic digestion.

The course provides chemical engineering tools applied to the analysis of energy conversion processes involving biomass and organic waste.

The course provides also the fundamentals of a software package designed for process modeling and simulation that is extensively utilized in chemical and energy industrial sectors.

The student at the end of the course:

- will be able to analyze the various technologies available to energetically valorize the various types of biomass and organic waste;
- will be able to evaluate performances and limits of the same technologies in relation to the substrate to be treated;
- will have clear concepts and design elements to address the design of a bioenergy plant.

Themen der Lehrveranstaltung

The (bio-)energy scenario. Biomass, Bio-Energy, Bio-Fuels and Bio-Refinery

 Biomass and bioenergy; Bioenergy production (World, Europe, Italy); Advantages and disadvantages; Carbon neutrality and negativity; Circular (bio)economy; Economic and environmental sustainability (EROI, LCA); Biofuels; Biorefineries

Biomass: Typologies, availability, properties and characterization

- Biomass typologies: lignocellulosic, starchy, sugary, oilseeds,
 OFMSW, sewage sludge, manure, algal biomass
- Biomass: constituents at molecular level, at chemical level, energy properties.

Biomass conversion: Physical and chemical pretreatments

- Storage; Dewatering and drying; Size reduction; Densification;
 Transport; Separation and extraction
- Steam explosion; Acid, alkaline and organosolv pre-treatment;
 Chemical pretreatment

Biomass conversion: Chemical and biochemical conversion - Synthesis of first-generation biofuels

- Bio-ethanol production (hydrolysis, fermentation, distillation, dehydration)
- Biodiesel production (oil trans-esterification)
- Anaerobic digestion and biogas production from organic waste

and wastewater

Chemical engineering tools for analysis and design of energy processes

- Reaction stoichiometry
- Reaction kinetics
- Reaction thermodynamics
- Reactors
- Process analysis and design

Biomass conversion: Thermochemical conversion

- Pyrolysis, gasification, combustion: processes and plants
- Hydrothermal processes: carbonization, liquefaction, gasification
- · Methane steam reforming
- P&Id and safety issues

Treatment and valorization of products

- Gas cleaning and upgrading
- Producer gas properties and uses
- Bio-oil
- Char and related materials

Process modeling and simulation with a commercial software

- Methane combustion for CHP: turbogas
- Biomass gasification
- Methane steam reforming

Biomass plants: case studies

- Design of a thermal plant fueled by wood chips P=70 kW.
- Anaerobic digestion plant for organic waste P=999 kWe.
- Bolzano WtE plant.
- Copenhill WtE plant.
- Gasifiers in Germany and Austria

Innovative processes for transport biofuels

• HVO, ethanol, LDO, HTL biocrude, FT-diesel, methanol, DME, H2, CH4.

Stichwörter

Biomass, Organic waste, Industrial Processes, Process modeling and simulation, Circular Bioeconomy

Empfohlene	Capability to write mass and energy balances.
Voraussetzungen	
Propädeutische	In-depth knowledge of topics dealt with in previous courses.
Lehrveranstaltungen	In this course we will make use of some of the concepts
	(thermodynamics, reaction kinetics, heat transfer, conversion
	technologies, combustion, heat exchangers) dealt with in previous
	courses, in particular in Power Production, CHP and District Heating
	Systems.
Unterrichtsform	The course accounts for frontal lectures (50 hours), during which
	the lecturer will address both informative and formative topics. The
	informative activity will provide a comprehensive overview of the
	bio-energy sector. The training activity will be divided into a
	discussion of the theoretical topics and the development and
	solving of some "practical" problems, where the theory will be
	applied. The lecturer will use PowerPoint presentations, while the
	exercises will be held on the blackboard.
	The course also includes ten hours classes in a computer lab where
	basic knowledge will be provided for the use of a commercial
	process design and simulation software, and where the software
	will be used by students, along with the lecturer, to design simple
	thermochemical bio-energetic processes.
	Students will be provided in advance with the teaching material
	used during the classes (slides PP, lecture-notes, articles: classes
	are also intended to deeply and critically discuss the topics).
	The student, in his/her own personal work, must assimilate the
	concepts at the base of the training part and, if necessary, ask the
	lecturer (lesson time or other time) for additional explanations.
	During classes some exercises will be presented that the student
	will have to try to carry out autonomously, so that he/she can
	"self-evaluate" his/her level of learning.
	Finally, the student is invited to collaborate with his/her colleagues
	(in groups of 2-3 people) to draw up a bioenergy project to be
	developed in the simulation and design software taught. The
	design project should be agreed in advance with the lecturer who
	is available to help the student during the project development.
	The project will be concluded with a written report that will be
	discussed by the student groups in front of the lecturer.
Anwesenheitspflicht	Recommended but not compulsory.
Spezifische Bildungsziele	Intended Learning Outcomes (ILO):

und erwartete	1. Knowledge and understanding:
Lernergebnisse	The student will be aware from a technical point of view of energy
	plants where biomasses and organic waste are used.
	2. Applying Knowledge and understanding:
	The student will be capable of applying the acquired knowledge to
	design biomass energy plants and to evaluate their performances.
	3 , p = 1.1. 3 , p = 1.1. 1
	3. Making judgments:
	The student will become capable of judging the different options
	available given the nature of the feedstock available (kind of
	biomass, kind of organic waste) and the technological
	opportunities to valorize it as bioenergy.
	4. Communication skills:
	The student will be capable of efficiently communicating
	concerning bio-energy options, processes and plants.
	5. Learning skills
	The student will be taught that significant bioenergy process
	advancements are in progress, and that he/she should keep
	him/herself updated on the last technological outcomes that face
	the bio-energy market.
Spezifisches Bildungsziel	-
und erwartete	
Lernergebnisse (zusätzliche Informationen)	
-	
Art der Prüfung	The assessment of the knowledge gained on the course and the
	ability to apply such knowledge - as described in the "Learning Outcomes" section - is conducted in two steps:
	• a presentation with discussion, in the lecturer's office, that will be
	based on the written report by the student (or better by the group
	of students) concerning the project of a thermo-energy process –
	project developed by the student(s) using the commercial software
	taught.
	an oral exam that will cover the various topics addressed in the
	course and where the student can also be asked to solve a
	"simple" bio-energy exercise.
	The final exam mark will take into account both the project work

	presentation and the oral exam.
	- Formative assessment: In class (and info-lab) exercises: 20x60 minutes; ILOs assessed: 2 Summative assessment: 30% project work presentation: Presentation and discussion in group (about 45 minutes); ILOs assessed: 2, 3, 4; 70% oral exam: 3-4 open questions; ILOs assessed: 1,2,3,4,5.
Bewertungskriterien	Capability to address practical and theoretical issues related to bio- energy processes and plants. Capability to solve simple and complex bio-energy problems. Capability to design bio-energy processes by a commercial design and simulation software.
Pflichtliteratur	Lecture notes and other material provided by the lecturer.
Weiterführende Literatur	Main reference books: Biomass for renewable energy, fuels, and chemicals. D.L. Klass, Academic Press, http://www.sciencedirect.com/science/book/9780124109506 AVAILABLE ON-LINE FOR FREE Biogas – Green Energy – Process, Design, Energy Supply, Environment, by Peter Jacob Jørgensen, PlanEnergi, https://www.lemvigbiogas.com/BiogasPJJuk.pdf AVAILABLE ON-LINE FOR FREE Sistemi a biomasse: progettazione e valutazione economica. E. Bocci, A. Caffarelli, M. Villarini, A. D'Amato, Maggioli Editore, http://www.maggiolieditore.it/9788838759697-sistemi-a-biomasse-progettazione-e-valutazione-economica.html
	Other reference books: Biogas Handbook, by Teodorita Al Seadi, Dominik Rutz, Heinz Prassl, Michael Köttner, Tobias Finsterwalder, Silke Volk, Rainer Janssen, https://lemvigbiogas.com/BiogasHandbook.pdf AVAILABLE ON-LINE FOR FREE
Weitere Informationen	Connections with other courses: In-depth knowledge of topics dealt with in previous courses. In this course we will make use of some of the concepts

	(thermodynamics, reaction kinetics, heat transfer, conversion technologies, combustion, heat exchangers) dealt with in previous courses, in particular in Power Production, CHP and District Heating Systems.
Ziele für nachhaltige	Bezahlbare und saubere Energie, Maßnahmen zum Klimaschutz,
Entwicklung (SDGs)	Nachhaltiger Konsum und Produktion