

Syllabus

Course Description

Course Tills	District and Malanday Outside to active
Course Title	Plastic and Molecular Optoelectronics
Course Code	46087
Course Title Additional	
Scientific-Disciplinary Sector	FIS/01
Language	English
Degree Course	PhD Programme in Advanced-Systems Engineering
Other Degree Courses (Loaned)	
Lecturers	Prof. Franco Cacialli, Franco.Cacialli@unibz.it https://www.unibz.it/en/faculties/engineering/academic- staff/person/47601 dr. Manuela Ciocca, Manuela.Ciocca@unibz.it https://www.unibz.it/en/faculties/engineering/academic- staff/person/44873
Teaching Assistant	
Semester	Second semester
Course Year/s	2025/2026
СР	3
Teaching Hours	30
Lab Hours	
Individual Study Hours	45
Planned Office Hours	7
Contents Summary	
Course Topics	Introduction - I. semiconductors, Organic semiconducting (macro)molecules, Piorbitals and conjugation ii. Excitations: excitons and polarons iii. Exciton spin: singlets and triplets

- iv. Synopsis electronic and optical processes
- v. Optical properties: a few examples
- vi. Summary of optical properties
- 2) Organic light-emitting diodes
- a. Structure
- b. Fundamental processes
- i. Charge injection
- ii. Charge transport
- iii. Exciton formation
- iv. Exciton decay
- c. Characterisation of OLEDs
- i. Relevant performance parameters
- ii. Characterising metal-semiconductor contacts:
- d. Practical implementations
- i. Anodes
- ii. Cathodes
- iii. Active materials
- iv. Fabrication technology: solution processability
- e. State-of-the-art devices and future prospects
- 3) Organic photovoltaic diodes (PVDs) -
- a. Fundamental process
- b. Characterisation of PVDs
- c. Examples of polymer-based PVDs
- d. State-of-the-art devices and future prospects
- 4) Supramolecular structures -
- a. Introduction to secondary (non covalent) interactions
- b. Threaded molecular wires (TMWs).
- 5) Near-infrared (NIR) emitting + absorbing materials
- a. Overview
- b. Challenges: the energy gap "rule"
- c. Materials not leveraging triplet-assisted photophysics
- d. Current state-of-the-art
- 6) Advanced bio-optoelectronic applications
- a. Role of conjugated polymers in advanced bio-optoelectronic applications

	1
	i. Artificial retina technologies
	ii. Biohybrid interfaces
	iii. Bioprinting.
Keywords	Organic semiconductors, photophysics, OLEDs, PVDs,
	bioelectronics
Recommended Prerequisites	Physics I and II. Basic Electronics
Propaedeutic Courses	
Teaching Format	Lectures (online or in presence)
Mandatory Attendance	
Specific Educational	
Objectives and Learning	
Outcomes	
Specific Educational	1. Knowledge and understanding
Objectives and Learning	Knowledge and understanding of:
Outcomes (additional info.)	- the fundamental physical and chemical properties fof organic
	semiconductors (OS)
	- Understanding basic operation of organic light-emitting diodes
	(OLEDs)
	- Understanding basic operation of light-emitting electrochemical
	cells (LECs)
	- Understanding basic operation of organic solar cells
	2. Applying knowledge and understanding
	3. Ability to apply knowledge for solving given problems,
	including solving them with numerical data, approximating
	significant numbers, and taking care of the notation of units.
	Making judgements
	4. Ability to judge plausibility of results.
	, , , ,
	Communication skills
	5. Maturing of technical-scientific terminology.
	Ability to learn
	6. Learning skills to independently study and apply methods of
	physics for specific applications beyond topics covered in this lecture.
Assessment	Oral exam in which the students are expected to give a 20 minutes
	oral orall in miner are stadents are expected to give a 20 minutes

	<u> </u>
	presentation on a topic of their choice among those treated during the course and of particular relevance to their PhD project. This will serve as a basis. Additional questions will be asked to test basic understanding and ability of the student to apply the concepts to relevant applications.
Evaluation Criteria	The grading will be based on:Clarity and correctness of the presentation.The correctness of the answers given to the questions, and of the terminology used.
Required Readings	Lecture notes.
Supplementary Readings	 [1] Electronic Processes in Organic Crystals and Polymers, M Pope, C Swenberg, Oxford University Press, 2nd ed., Oxford, 1999 [2] Organic Light-Emitting Devices, K Müllen and U Scherf eds., Wiley-VCH, Weinheim, 2006 [3] Organic Electronics: Foundations to Applications, SR Forrest, Oxford University Press, Oxford, 2020
Further Information	
Sustainable Development Goals (SDGs)	Quality education