
Syllabus
Course Description

Course Title Fundamentals of Programming

Course Code 42426

Course Title Additional

Scientific-Disciplinary Sector INF/01

Language English

Degree Course Bachelor in Electronic and Information Engineering

Other Degree Courses
(Loaned)

Lecturers Dr. Sergio Tessaris,
Sergio.Tessaris@unibz.it
https://www.unibz.it/en/faculties/engineering/academic-
staff/person/2315
Prof. Rosella Gennari,
Rosella.Gennari@unibz.it
https://www.unibz.it/en/faculties/engineering/academic-
staff/person/8607

Teaching Assistant Dott. Muhammad Bilal Khan

Semester All semesters

Course Year/s 1

CP 11

Teaching Hours 70

Lab Hours 40

Individual Study Hours 165

Planned Office Hours 33

The course refers to the basic educational activities and belongs to
the scientific area of Computer Science.
The course is designed for acquiring professional skills and
knowledge.
The objective of the course is to teach the fundamental principles
of programming, with a focus on structured programming, and
tools to support the development of software.

Contents Summary

Students will learn how to solve computational problems with well-
designed programs The learning will be based on examples and
practical assignments, from very simple ones to more complex.
The final objective for the student is to acquire the ability to
translate a set of functional and non-functional requirements into a
software solution.

Module 1:
1. Introduction to: hardware and software, with computer
organisation; data hierarchy; machine languages, assembly
languages, high-level programming languages. Introduction to
Python: interactive mode, script mode, Jupyter.
2. Introduction to different programming paradigms, focusing on
the structured programming paradigm.
3. Structured programming: basic data types, variables,
constants, operators and expressions; standard input/output
handling; control flow structures; file and error handling.
4. Basic data structures/types of Python: (1) lists, (2)
dictionaries, (3) tuples, (4) sets.
5. Subroutines and functions in Python (with/without
parameters; with/without return).
6. Basics on modules and packages in Python.

The above will be delivered meanwhile acquiring practical
knowledge, through programming exercises, of how to program a
simple physical-computing board with a Python-based language
(e.g., Raspberry PicoH or PicoWH, ESP32, running MicroPython).
Programming exercises cover the following:
- how to perceive data via basic physical input devices (e.g.,
temperature sensor, humidity sensor),
- how to process and store data,
- how to plot data depending on their features.

Module 2:
The following topics will be covered by focusing on the C
programming language and its specific features. Differences and
similarities with Python will be outlined.

1. Introduction to C programming and toolchain
1.1. Understanding and using the compiler toolchains
1.2. Understanding cross-compilation

Course Topics

1.3. Tools to support modern software development
2. C language: syntax and data types
2.1. C standards
2.2. Control flow
2.3. Basic and derived types
3. C memory management and activation record
3.1. C memory organisation
3.2. Dynamic memory management
4. C programming techniques
4.1. Organisation of software artifacts in C
4.2. Effective use of C constructs and data types
4.3. Defensive programming techniques
5. Debugging and software testing
5.1. Techniques and strategies for effective debugging of code
5.2. Debugging tools
5.3. Unit testing

Keywords Programming Fundamentals; Python; Physical Computing; C;
Software management and testing

Recommended Prerequisites

Propaedeutic Courses

Teaching Format Lectures, exercises, laboratory activites

Mandatory Attendance Strongly recommended

Specific Educational
Objectives and Learning
Outcomes

The course refers to the basic educational activities and belongs to
the scientific area of Computer Science.
The course is designed for acquiring professional skills and
knowledge.
The objective of the course is to teach the fundamental principles
of programming, with a focus on structured programming, and
tools to support the development of software.
Students will learn how to solve computational problems with well-
designed programs The learning will be based on examples and
practical assignments, from very simple ones to more complex.
The final objective for the student is to acquire the ability to
translate a set of functional and non-functional requirements into a
software solution.

Knowledge and understanding
• Know the fundamental principles of programming.
• Know different programming paradigms and models of

Specific Educational
Objectives and Learning
Outcomes (additional info.)

computation.
• Have a solid knowledge of the most important data structures
and programming techniques.
Applying knowledge and understanding
• Be able to solve problems using programming.
• Be able to develop small and medium size programs starting
from given requirements.
Making judgements
• Be able to collect and interpret useful data and to judge
information systems and their applicability.
• Be able to identify an appropriate programming paradigm and
data structures to solve a given problem.
Communication skills
• Be able to describe and motivate the software design choices.
• Be able to properly document a software artifact to ensure its
integration in more complex systems.
Learning skills
Be able to learn how to use different procedural programming
languages in autonomy, by identifying and understanding the
relevant literature.

Module 1

Attending students are those that
- attend at least 70% of the exercise classes of the module, i.e.,
at least 14 hours (hard constraint),
- participate in class with a positive and reflective attitude,
- show a committment in tackling the class exercises for
learning, taking due care of deadlines and instructions.
The assessment is as follows:
- For the lecture part: a written, closed-book exam with closed-
ended and open-ended questions for all students;
- For the exercise part: a programming project for attending
students; a written exam for non-attending students.
The results of written exams are only valid for the session of the
examination. The result of the project will be valid for 1 academic
year and cannot be carried over beyond that time-frame.
-
Note: in case of a positive outcome, the intermediate exam,
assignments and project work are valid for 1 academic year only
and cannot be carried over beyond that time-frame.

Assessment

Module 2

Assessment will be the same for attending and non-attending
students. It’s divided in two parts:
1. Written final exam, with review questions about the lecture
material (closed-ended questions and closed-book exam). The
results of the written exam are only valid for the session of the
examination.
2. Lab practical assignments to be submitted online;
contributions will be valid for 1 academic year and cannot be
carried over beyond that time-frame.

A student passes the exam only if the student has a positive result
(i.e., not less than 18) and tackles all parts of the exam (see
Assessment above) by the appointed deadlines.

The result is the average of the marks for Modules 1 and 2. The
marks for Modules 1 and 2 are given as follows:
- the mark for Module 1 ranges from 0 to 30: the
assignments/projects count for 20% (min is 0, max is 6), and the
written exam for 80% of the mark (min is 0, max is 24);
- the mark for Module 2 ranges from 0 to 30: the assignments
count for 60%, and the written exam counts for 40% of the mark:
o All assignments must be submitted before the date of the
written exam, failure of doing so will result in an incomplete
submission and non-admission to the final evaluation;
o Only some of the assignments, clearly indicated beforehand,
will contribute to the mark.
Laude is jointly decided by the course lecturers in case the marks
for both modules is 30.

E.g., suppose marks per Module are as follows:
- Module 1’s mark is 28 (25 for the written exam, 3 for the
project);
- Module 2’s mark is 30.
The result for the student is then 29, the average of 28 and 30.

Written exam questions are evaluated in terms of correctness and
clarity.

Evaluation Criteria

Assignments/projects are evaluated in terms of:
- quality, according to the criteria illustrated and explained in
class, and recorded in the companion materials (e.g., code quality
criteria),
- displayed problem-solving skills,
- displayed communication skills,
- displayed critical-thinking skills.

Required Readings
Material is provided during the course.

Supplementary Readings
Material is provided during the course.

Further Information Subject Librarian: David Gebhardi, David.Gebhardi@unibz.it and
Ilaria Miceli, Ilaria.Miceli@unibz.it

Sustainable Development
Goals (SDGs)

Industry, innovation and infrastructure, Quality education

Course Module
Course Constituent Title Fundamentals of Programming I

Course Code 42426A

Scientific-Disciplinary Sector INF/01

Language English

Lecturers Prof. Rosella Gennari,
Rosella.Gennari@unibz.it
https://www.unibz.it/en/faculties/engineering/academic-
staff/person/8607

Teaching Assistant Dott. Muhammad Bilal Khan

Semester First semester

CP 6

Responsible Lecturer

Teaching Hours 40

Lab Hours 20

Individual Study Hours 90

Planned Office Hours

Contents Summary The course refers to the basic educational activities and belongs to
the scientific area of Computer Science.
The course is designed for acquiring professional skills and
knowledge.
The objective of the course is to teach the fundamental principles
of programming, with a focus on structured programming, and
tools to support the development of software.
Students will learn how to solve computational problems with well-
designed programs The learning will be based on examples and
practical assignments, from very simple ones to more complex.
The final objective for the student is to acquire the ability to
translate a set of functional and non-functional requirements into a
software solution.

Course Topics 1. Introduction to: hardware and software, with computer
organisation; data hierarchy; machine languages, assembly
languages, high-level programming languages. Introduction to
Python: interactive mode, script mode, Jupyter.
2. Introduction to different programming paradigms, focusing on
the structured programming paradigm.
3. Structured programming: basic data types, variables,
constants, operators and expressions; standard input/output
handling; control flow structures; file and error handling.
4. Basic data structures/types of Python: (1) lists, (2)
dictionaries, (3) tuples, (4) sets.
5. Subroutines and functions in Python (with/without
parameters; with/without return).
6. Basics on modules and packages in Python.

The above will be delivered meanwhile acquiring practical
knowledge, through programming exercises, of how to program a
simple physical-computing board with a Python-based language
(e.g., Raspberry PicoH or PicoWH, ESP32, running MicroPython).
Programming exercises cover the following:
- how to perceive data via basic physical input devices (e.g.,
temperature sensor, humidity sensor),
- how to process and store data,
- how to plot data depending on their features.

Teaching Format Frontal lectures, exercises, projects.

Required Readings
Made available in the course repository

Supplementary Readings
Made available in the course repository

Course Module
Course Constituent Title Fundamentals of Programming II

Course Code 42426B

Scientific-Disciplinary Sector INF/01

Language English

Lecturers Dr. Sergio Tessaris,
Sergio.Tessaris@unibz.it
https://www.unibz.it/en/faculties/engineering/academic-
staff/person/2315

Teaching Assistant Dott. Muhammad Bilal Khan

Semester Second semester

CP 5

Responsible Lecturer

Teaching Hours 30

Lab Hours 20

Individual Study Hours 75

Planned Office Hours 15

Contents Summary The course refers to the basic educational activities and belongs to
the scientific area of Computer Science.
The course is designed for acquiring professional skills and
knowledge.
The objective of the course is to teach the fundamental principles
of programming, with a focus on structured programming, and
tools to support the development of software.
Students will learn how to solve computational problems with well-
designed programs The learning will be based on examples and
practical assignments, from very simple ones to more complex.
The final objective for the student is to acquire the ability to
translate a set of functional and non-functional requirements into a
software solution.

The following topics will be covered by focusing on the C Course Topics

programming language and its specific features. Differences and
similarities with Python will be outlined.

1. Introduction to C programming and toolchain
1.1. Understanding and using the compiler toolchains
1.2. Understanding cross-compilation
1.3. Tools to support modern software development
2. C language: syntax and data types
2.1. C standards
2.2. Control flow
2.3. Basic and derived types
3. C memory management and activation record
3.1. C memory organisation
3.2. Dynamic memory management
4. C programming techniques
4.1. Organisation of software artifacts in C
4.2. Effective use of C constructs and data types
4.3. Defensive programming techniques
5. Debugging and software testing
5.1. Techniques and strategies for effective debugging of code
5.2. Debugging tools
5.3. Unit testing

Teaching Format Frontal lectures, practical assignments

Required Readings
Made available in the course repository

Supplementary Readings
Made available in the course repository

