
Syllabus
Course Description

Course Title Software Design and Implementation

Course Code 76105

Course Title Additional

Scientific-Disciplinary Sector INF/01

Language English

Degree Course Master in Software Engineering

Other Degree Courses
(Loaned)

Lecturers Prof. Dr. Claus Pahl,
Claus.Pahl@unibz.it
https://www.unibz.it/en/faculties/engineering/academic-
staff/person/36376
Dr. Eduardo Martins Guerra,
Eduardo.MartinsGuerra@unibz.it
https://www.unibz.it/en/faculties/engineering/academic-
staff/person/43879

Teaching Assistant

Semester First semester

Course Year/s 1

CP 12

Teaching Hours 80

Lab Hours 40

Individual Study Hours 180

Planned Office Hours 36

Module M1 - Requirements Engineering for Dependable Systems
• Functional and Non-Functional Requirements
• Requirements Engineering Processes
• Requirements Elicitation and Analysis
• Requirements Specification
• Validation of Requirements
• Requirements Change

Contents Summary

Module M2 - Software Architecture
• Quality Attributes and Software Architecture Concepts
• Architecture Partitioning (layers, modules, components)
• Flexible and Adaptive Architectural Design
• Architectural Patterns and Styles
• Integrating AI Components into Architectural Designs
• Continuous Architecture.

Course Topics Module M1 - Requirements Engineering for Dependable Systems –
defines different types of requirements and introduces the different
phases of a requirements engineering process. This provides a
generic process framework. In the second part of this module, the
focus is on dependable systems and specific requirement types and
processes for this context, addressing in particular metrics for
software quality. The students will learn the relevant skill in two
separate, group-oriented and problem-based projects.

Module M2 – Software Architecture - This course explores the
foundational concepts of software architecture, emphasizing quality
attributes and architectural design principles. It covers architecture
partitioning through layers, modules, and components, and focuses
on creating flexible and adaptive systems. Students will examine
key architectural patterns and styles, learn strategies for
integrating AI components into system architectures, and
understand the principles of continuous architecture to support
ongoing system evolution and improvement.

Keywords Requirements Engineering, Dependability Requirements, Software
Architecture, Software Design.

Recommended Prerequisites Basic courses in Programming and Software Engineering.
Familiarity with UML and software modelling. Familiarity with the
basics of objectorientation and automated testing.

Propaedeutic Courses N/A

Teaching Format Frontal lectures, exercises; team and/or individual projects.

Mandatory Attendance Not compulsory. Non-attending students must contact the lecturer
at the start of the course to agree on the modalities of the
independent study.

Specific Educational
Objectives and Learning

Knowledge and understanding
D1.1 possess solid knowledge of both the fundamentals and the

application aspects of the various fundamental areas of computer
science;
D1.2 be able to analyse and solve even complex problems in the
area of Software Engineering for Information Systems with
particular emphasis on the use of empirical evaluation studies,
methods, techniques, and technologies;
D1.3 have an in-depth knowledge of the scientific method of
investigation applied to even complex systems and innovative
technologies that support Software Engineering and its various
fields of applications.
D1.4 have an in-depth knowledge of the principles, structures and
use of processing systems for the automation of software systems.
D1.5 know the fundamentals, techniques, and methods of design,
customisation and implementation of software to support the
automation of new-generation software systems for industrial
production, company business, education, and society.
D1.6 understand the elements of corporate and professional
culture.
D1.7 know the various fields of application of Software Engineering
also with reference to the local, national, and international
economic-social context.

Applying knowledge and understanding
D2.3 ability to apply the principles of software engineering to IT
and non-IT domains of varying complexity in which software
technology is of great importance.
D2.4 ability to define an innovative technical solution to an
application problem that respects technical, functional, and
organisational constraints and requirements.
D2.5 ability to extend and modify an existing technical solution or
theoretical model in an original way, taking into account changing
conditions, requirements and the evolution of technology.

Making judgments
D3.2 ability to plan and re-plan a technical project activity and to
carry it out within the defined deadlines and objectives.
D3.3 ability to define work objectives compatible with the available
time and resources.
D3.4 ability to reconcile conflicting project objectives, find
acceptable compromises within the limits of cost, resources, time,

Outcomes

knowledge, or risk.
D3.5 ability to work with broad autonomy, taking responsibility for
projects and structures.

Communication skills
D4.2 ability to structure and draft scientific and technical
descriptive documentation of project activities for diverse
audiences.
D4.3 ability to work and co-ordinate the work of a multi-disciplinary
project team, to identify activities aimed at achieving the project
objectives.
D4.5 ability to interact and collaborate in the realisation of a
project or research with peers and experts.

Learning skills
D5.2 ability to independently keep up to date with developments in
the most important fields of information technology.

Module 1: Requirements Engineering for Dependable Systems
The course objective is to familiarize students with advanced
techniques
and tools to elicit, specify and manage software system
requirements,
aiming to understand both conceptual foundations as well as
practical
applicability. The students will acquire skills to elicit requirements
in
various settings and specify them in a way that permits
communication
with various stakeholders, but also suitable for managing change in
software projects. Quality management is specifically introduced.
The
students are exposed to problem-solving skills that allow
requirements
engineering in a dynamic, multi-stakeholder setting.

Module 2: Software Architecture
The following are the module specific objective: To understand the
role played by software architecture in software development
lifecycle; to design software architecture based on patterns and
best practices; to obtain an overview of different software

Specific Educational
Objectives and Learning
Outcomes (additional info.)

architecture styles and the newest trends in software architecting;
to evaluate and balance trade-offs of quality attributes on software
architecture; to design architectures that integrate artificial
intelligence components into applications; and to learn how to
apply different software architecture styles to develop high quality
software.

Module 1: Requirements Engineering for Dependable Systems
The assessment is based on the lab assessment and the final
written
exam. The lab assessment is composed practical activities that can
be
performed by the students during the course. The final written
exam
evaluates the students' understanding of the theoretical
backgrounds
and the ability of solving problems. The student should achieve at
least
50% of the lab grade to do the final exam.

Module 2: Software Architecture
The assessment is based on the lab assessment and the final
written
exam. The lab assessment is composed of practical activities that
can
be performed by the students during the course. The final written
exam
evaluates the students' understanding of the theoretical
background
and the ability to solve problems. The student should achieve at
least
50% of the lab grade to do the final exam.

The written exam will evaluate the student's knowledge (D1.1,
D1.2, D1.3, D1.4, D1.5, D1.6, D1.7) and how this knowledge can
be applied to specific problems (D2.3, D2.4, D2.5). The course labs
and activities will evaluate their decision-making capacity in the
context of software projects (D3.2, D3.3, D3.4, D3.5), exercising
their communication skills (D4.2, D4.3, D4.5). Learning skills will
be evaluated in practical activities, in which students need to
research new technologies and methods (D5.2) in the context of

Assessment

each module.

Evaluation Criteria Module 1: Requirements Engineering for Dependable Systems
For attending students, the grade is calculated based on (i) the lab
assessment (50% weight) and (ii) the written final exam (50%
weight).
For non-attending students, they should follow the delivery
schedule
for the lab assessments, the grade is calculated the same way.

Module 2: Software Architecture
For attending students, the grade is calculated based on (i) the lab
assessment (50% weight) and (ii) the written final exam (50%
weight).
For non-attending students, they should follow the delivery
schedule
for the lab assessments, the grade is calculated the same way.

A student needs to be approved in both modules to be approved in
the
course. The final grade is the average value of the grades from
both
modules.

Required Readings
Sommerville, I. (2015). Software Engineering. 10th Edition.
Pearson.

•

Laplante, P.A., and Kassab, M.H. (2022). Requirements
Engineering for Software and Systems. CRC Press.

•

Robert C. Martin. 2017. Clean Architecture: A Craftsman's
Guide to Software Structure and Design (1st ed.). Prentice
Hall Press, Upper Saddle River, NJ, USA.

•

Mark Richards. 2015. Software Architecture Patterns.
O'Reilly Media, Inc.

•

Johnson, R., & Vlissides, J. (1995). Design patterns.
Elements of Reusable Object-Oriented Software Addison-
Wesley, Reading.

•

Fowler, M. (2018). Refactoring: improving the design of
existing code. Addison-Wesley Professional.

•

Evans, E., & Evans, E. J. (2004). Domain-driven design:
tackling complexity in the heart of software. Addison-Wesley
Professional.

•

Len Bass, Paul Clements, and Rick Kazman. 2012. Software •

Supplementary Readings

Architecture in Practice (3rd ed.). Addison-Wesley
Professional.
Open educational resources, representing alternative or
supplementary materials, shall be linked to the course
website.

•

Further Information Software Modelling (e.g., Argo UML, Papyrus, StarUML, draw.io),
Java JDK, Java Programming IDE (e. g. Eclipse, Intellij).

Sustainable Development
Goals (SDGs)

Affordable and clean energy, Responsible consumption and
production, Sustainable cities and communities, Industry,
innovation and infrastructure

Course Module
Course Constituent Title Requirements Engineering for Dependable Systems

Course Code 76105A

Scientific-Disciplinary Sector INF/01

Language English

Lecturers Prof. Dr. Claus Pahl,
Claus.Pahl@unibz.it
https://www.unibz.it/en/faculties/engineering/academic-
staff/person/36376

Teaching Assistant

Semester First semester

CP 6

Responsible Lecturer

Teaching Hours 40

Lab Hours 20

Individual Study Hours 90

Planned Office Hours 18

Contents Summary • Functional and Non-Functional Requirements
• Requirements Engineering Processes
• Requirements Elicitation and Analysis
• Requirements Specification
• Validation of Requirements
• Requirements Change.

The course objective is to familiarize students with advanced Course Topics

techniques and tools to elicit, specify and manage software system
requirements, aiming to understand both conceptual foundations
as well as practical applicability. The students will acquire skills to
elicit requirements in various settings and specify them in a way
that permits communication with various stakeholders, but also
suitable for managing change in software projects. Quality
management is specifically introduced. The students are exposed
to problem-solving skills that allow requirements engineering in a
dynamic, multi-stakeholder setting.

Teaching Format Frontal lectures, exercises; team and/or individual projects.

Required Readings
Sommerville, I. (2015). Software Engineering. 10th Edition.
Pearson.

•

Laplante, P.A., and Kassab, M.H. (2022). Requirements
Engineering for Software and Systems. CRC Press.

•

Supplementary Readings
Open educational resources, representing alternative or
supplementary materials, shall be linked to the course
website.

•

Course Module
Course Constituent Title Software Architecture

Course Code 76105B

Scientific-Disciplinary Sector ING-INF/05

Language English

Lecturers Dr. Eduardo Martins Guerra,
Eduardo.MartinsGuerra@unibz.it
https://www.unibz.it/en/faculties/engineering/academic-
staff/person/43879

Teaching Assistant

Semester First semester

CP 6

Responsible Lecturer

Teaching Hours 40

Lab Hours 20

Individual Study Hours 90

Planned Office Hours 18

Contents Summary • Quality Attributes and Software Architecture Concepts
• Architecture Partitioning (layers, modules, components)
• Flexible and Adaptive Architectural Design
• Architectural Patterns and Styles
• Integrating AI Components into Architectural Designs
• Continuous Architecture

Course Topics This course provides a comprehensive exploration of foundational
and advanced topics in software architecture, focusing on both
theoretical understanding and hands-on application. Students will
begin by examining key quality attributes and essential software
architecture concepts, followed by strategies for architecture
partitioning, including the use of layers, modules, and components.
Emphasis will be placed on flexible and adaptive architectural
design to accommodate evolving requirements. The course also
covers a range of architectural patterns and styles, empowering
students with tools to make informed design decisions. A modern
perspective is introduced through the integration of AI components
into architectural designs, preparing students to address current
industry demands. Additionally, the concept of continuous
architecture will be explored to support ongoing system evolution.
Throughout the course, students will engage in practical activities
that reinforce theoretical knowledge and promote the application
of architectural principles in real-world scenarios.

Teaching Format Frontal lectures, exercises; team and/or individual projects.

Required Readings
Robert C. Martin. 2017. Clean Architecture: A Craftsman's
Guide to Software Structure and Design (1st ed.). Prentice
Hall Press, Upper Saddle River, NJ, USA.

•

Mark Richards. 2015. Software Architecture Patterns.
O'Reilly Media, Inc.

•

Johnson, R., & Vlissides, J. (1995). Design patterns.
Elements of Reusable Object-Oriented Software Addison-
Wesley, Reading.

•

Fowler, M. (2018). Refactoring: improving the design of
existing code. Addison-Wesley Professional.

•

Evans, E., & Evans, E. J. (2004). Domain-driven design:
tackling complexity in the heart of software. Addison-Wesley
Professional.

•

Len Bass, Paul Clements, and Rick Kazman. 2012. Software
Architecture in Practice (3rd ed.). Addison-Wesley
Professional.

•

Supplementary Readings

Open educational resources, representing alternative or
supplementary materials, shall be linked to the course
website.

•

