

# **Syllabus**

# Descrizione corso

| Titolo insegnamento                  | Food-human axis: the gut microbiome                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Codice insegnamento                  | 46029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Titolo aggiuntivo                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Settore Scientifico-<br>Disciplinare | AGR/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lingua                               | Inglese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Corso di Studio                      | Corso di Dottorato di ricerca in Food Engineering and<br>Biotechnology (Ingegneria e biotecnologia degli alimenti)                                                                                                                                                                                                                                                                                                                                                                            |
| Altri Corsi di Studio<br>(mutuati)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Docenti                              | dott. Ali Zein Alabiden Tlais, AliZeinAlabiden.Tlais@unibz.it https://www.unibz.it/en/faculties/agricultural-environmental-food-sciences/academic-staff/person/38700                                                                                                                                                                                                                                                                                                                          |
| Assistente                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Semestre                             | Secondo semestre                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Anno/i di corso                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CFU                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ore didattica frontale               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ore di laboratorio                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ore di studio individuale            | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ore di ricevimento previste          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sintesi contenuti                    | This course provides several examples, in term of case studies, of the effect of the diet and functional foods on the human gut microbiome.  The course consists of one module of 30 hours of frontal lectures. The cases of studies regard the effect of the dietary I habits, including the Mediterranean diet, fibers, functional foods and other nutrients on the microbiota composition, functionality and metabolome.  The course has the educational objective to address the students |

| conditioning and monitoring of the human gut microbiota diversity and its repercussion on the human well-being.  The course will cover the following topics: Introduction to digestive system Introduction to the human gut microbiome/microbiota Approaches to study the gut microbiome The model system to study gut microbiota Food diet and bioactive compounds Fermented food In vitro and in vivo case studies (studying effect of food on gut gut microbiota) Probiotics  Parole chiave  Food; Digestion; Microbiota; Fermnetation; Probiotics  Perequisiti  Students should have basic knowledge of human biology, microbiology, biochemistry, and food science. A background in molecular biology or biotechnology would be advantageous but is not mandatory.  Insegnamenti propedeutici  Modalità di insegnamento  The course consists of lectures where the topics are presented by the professor. Course topics are presented at the blackboard and using electronic slides. Teaching material and additional materials are provided by the Professor at the beginning of each lectures.  Dibbligo di frequenza  Compulsary  Diettivi formativi specifici e isultati di apprendimento  The course provides students with an in-depth understanding of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Introduction to digestive system Introduction to the human gut microbiome/microbiota Approaches to study the gut microbiome The model system to study gut microbiota Food diet and bioactive compounds Fermented food In vitro and in vivo case studies (studying effect of food on gut gut microbiota) Probiotics  Parole chiave Food; Digestion; Microbiota; Fermnetation; Probiotics  Students should have basic knowledge of human biology, microbiology, biochemistry, and food science. A background in molecular biology or biotechnology would be advantageous but is not mandatory.  Insegnamenti propedeutici Modalità di insegnamento The course consists of lectures where the topics are presented by the professor. Course topics are presented at the blackboard and using electronic sildes. Teaching material and additional materials are provided by the Professor at the beginning of each lectures.  Dibbligo di frequenza Dibblitivi formativi specific e disultati di apprendimento attesi  The course provides students with an in-depth understanding of the complex interactions between diet, the human host, and the gut microbiome. It covers fundamental concepts of the digestive system, gut microbial ecology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host—microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                                                                                                                      |
| Introduction to digestive system Introduction to the human gut microbiome/microbiota Approaches to study the gut microbiome The model system to study gut microbiota Food diet and bioactive compounds Fermented food In vitro and in vivo case studies (studying effect of food on gut gut microbiota) Probiotics  Parole chiave Food; Digestion; Microbiota; Fermnetation; Probiotics  Students should have basic knowledge of human biology, microbiology, biochemistry, and food science. A background in molecular biology or biotechnology would be advantageous but is not mandatory.  Insegnamenti propedeutici Modalità di insegnamento The course consists of lectures where the topics are presented by the professor. Course topics are presented at the blackboard and using electronic sildes. Teaching material and additional materials are provided by the Professor at the beginning of each lectures.  Dibbligo di frequenza Dibblitivi formativi specific e disultati di apprendimento attesi  The course provides students with an in-depth understanding of the complex interactions between diet, the human host, and the gut microbiome. It covers fundamental concepts of the digestive system, gut microbial ecology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host—microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                 | Argomenti                       | The course will cover the following topics:                                                                                          |
| Approaches to study the gut microbiome The model system to study gut microbiota Food diet and bioactive compounds Fermented food In vitro and in vivo case studies (studying effect of food on gut gut microbiota) Probiotics Food; Digestion; Microbiota; Fermnetation; Probiotics Perequisiti Students should have basic knowledge of human biology, microbiology, biochemistry, and food science. A background in molecular biology or biotechnology would be advantageous but is not mandatory.  Insegnamenti propedeutici Modalità di insegnamento The course consists of lectures where the topics are presented by the professor. Course topics are presented at the blackboard and using electronic slides. Teaching material and additional materials are provided by the Professor at the beginning of each lectures.  Cobbligo di frequenza Dibettivi formativi specifici e isultati di apprendimento Intercations between diet, the human host, and the gut microbiome. It covers fundamental concepts of the digestive system, gut microbiome. It covers fundamental concepts of the digestive system, gut microbiome acology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host-microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dell'insegnamento               | Introduction to digestive system                                                                                                     |
| The model system to study gut microbiota Food diet and bioactive compounds Fermented food In vitro and in vivo case studies (studying effect of food on gut gut microbiota) Probiotics Percequisiti  Percequisiti  Students should have basic knowledge of human biology, microbiology, biochemistry, and food science. A background in molecular biology or biotechnology would be advantageous but is not mandatory.  Insegnamenti propedeutici  Modalità di insegnamento  The course consists of lectures where the topics are presented by the professor. Course topics are presented at the blackboard and using electronic slides. Teaching material and additional materials are provided by the Professor at the beginning of each lectures.  Dibbligo di frequenza  Dibettivi formativi specifici e isultati di apprendimento attesi  1. Knowledge and understanding The course provides students with an in-depth understanding of the complex interactions between diet, the human host, and the gut microbiome. It covers fundamental concepts of the digestive system, gut microbial ecology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host-microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | Introduction to the human gut microbiome/microbiota                                                                                  |
| Food diet and bioactive compounds Fermented food In vitro and in vivo case studies (studying effect of food on gut gut microbiota) Probiotics  Parole chiave Food; Digestion; Microbiota; Fermnetation; Probiotics  Students should have basic knowledge of human biology, microbiology, biochemistry, and food science. A background in molecular biology or biotechnology would be advantageous but is not mandatory.  Insegnamenti propedeutici  Modalità di insegnamento The course consists of lectures where the topics are presented by the professor. Course topics are presented at the blackboard and using electronic slides. Teaching material and additional materials are provided by the Professor at the beginning of each lectures.  Obbiligo di frequenza  Compulsary  In Knowledge and understanding The course provides students with an in-depth understanding of the complex interactions between diet, the human host, and the gut microbiome. It covers fundamental concepts of the digestive system, gut microbial ecology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host—microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | Approaches to study the gut microbiome                                                                                               |
| Fermented food In vitro and in vivo case studies (studying effect of food on gut gut microbiota) Probiotics  Parole chiave Food; Digestion; Microbiota; Fermnetation; Probiotics  Students should have basic knowledge of human biology, microbiology, biochemistry, and food science. A background in molecular biology or biotechnology would be advantageous but is not mandatory.  Insegnamenti propedeutici  Modalità di insegnamento The course consists of lectures where the topics are presented by the professor. Course topics are presented at the blackboard and using electronic slides. Teaching material and additional materials are provided by the Professor at the beginning of each lectures.  Obbiligo di frequenza  Compulsary  Dibiettivi formativi specifici e risultati di apprendimento attesi  In Knowledge and understanding The course provides students with an in-depth understanding of the complex interactions between diet, the human host, and the gut microbiane. It covers fundamental concepts of the digestive system, gut microbial ecology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host—microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | The model system to study gut microbiota                                                                                             |
| In vitro and in vivo case studies (studying effect of food on gut gut microbiota) Probiotics  Parole chiave  Food; Digestion; Microbiota; Fermnetation; Probiotics  Students should have basic knowledge of human biology, microbiology, biochemistry, and food science. A background in molecular biology or biotechnology would be advantageous but is not mandatory.  Insegnamenti propedeutici  Modalità di insegnamento  The course consists of lectures where the topics are presented by the professor. Course topics are presented at the blackboard and using electronic slides. Teaching material and additional materials are provided by the Professor at the beginning of each lectures.  Dibbligo di frequenza  Compulsary  Dibiettivi formativi specifici e isultati di apprendimento attesi  The course provides students with an in-depth understanding of the complex interactions between diet, the human host, and the gut microbiome. It covers fundamental concepts of the digestive system, gut microbial ecology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host—microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | Food diet and bioactive compounds                                                                                                    |
| microbiotics  Parole chiave  Food; Digestion; Microbiota; Fermnetation; Probiotics  Students should have basic knowledge of human biology, microbiology, biochemistry, and food science. A background in molecular biology or biotechnology would be advantageous but is not mandatory.  Insegnamenti propedeutici  Modalità di insegnamento  The course consists of lectures where the topics are presented by the professor. Course topics are presented at the blackboard and using electronic slides. Teaching material and additional materials are provided by the Professor at the beginning of each lectures.  Dibbligo di frequenza  Compulsary  Dibiettivi formativi specifici e insultati di apprendimento attesi  The course provides students with an in-depth understanding of the complex interactions between diet, the human host, and the gut microbiome. It covers fundamental concepts of the digestive system, gut microbial ecology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host—microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | Fermented food                                                                                                                       |
| Prerequisiti  Students should have basic knowledge of human biology, microbiology, biochemistry, and food science. A background in molecular biology or biotechnology would be advantageous but is not mandatory.  Insegnamenti propedeutici  Modalità di insegnamento  The course consists of lectures where the topics are presented by the professor. Course topics are presented at the blackboard and using electronic slides. Teaching material and additional materials are provided by the Professor at the beginning of each lectures.  Obbiligo di frequenza  Diettivi formativi specifici e isultati di apprendimento  attesi  1. Knowledge and understanding  The course provides students with an in-depth understanding of the complex interactions between diet, the human host, and the gut microbiome. It covers fundamental concepts of the digestive system, gut microbial ecology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host—microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | In vitro and in vivo case studies (studying effect of food on gut gut microbiota)                                                    |
| Students should have basic knowledge of human biology, microbiology, biochemistry, and food science. A background in molecular biology or biotechnology would be advantageous but is not mandatory.  Insegnamenti propedeutici  Modalità di insegnamento  The course consists of lectures where the topics are presented by the professor. Course topics are presented at the blackboard and using electronic slides. Teaching material and additional materials are provided by the Professor at the beginning of each lectures.  Obbligo di frequenza  Dibiettivi formativi specifici e risultati di apprendimento  attesi  1. Knowledge and understanding  The course provides students with an in-depth understanding of the complex interactions between diet, the human host, and the gut microbiome. It covers fundamental concepts of the digestive system, gut microbial ecology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host-microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | Probiotics                                                                                                                           |
| microbiology, biochemistry, and food science. A background in molecular biology or biotechnology would be advantageous but is not mandatory.  Modalità di insegnamento  The course consists of lectures where the topics are presented by the professor. Course topics are presented at the blackboard and using electronic slides. Teaching material and additional materials are provided by the Professor at the beginning of each lectures.  Obbligo di frequenza  Chiettivi formativi specifici e risultati di apprendimento attesi  1. Knowledge and understanding  The course provides students with an in-depth understanding of the complex interactions between diet, the human host, and the gut microbiome. It covers fundamental concepts of the digestive system, gut microbial ecology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host—microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Parole chiave                   | Food; Digestion; Microbiota; Fermnetation; Probiotics                                                                                |
| Modalità di insegnamento  The course consists of lectures where the topics are presented by the professor. Course topics are presented at the blackboard and using electronic slides. Teaching material and additional materials are provided by the Professor at the beginning of each lectures.  Compulsary  Dibettivi formativi specifici e risultati di apprendimento  attesi  The course provides and understanding  The course provides students with an in-depth understanding of the complex interactions between diet, the human host, and the gut microbiome. It covers fundamental concepts of the digestive system, gut microbial ecology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host—microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Prerequisiti                    | microbiology, biochemistry, and food science. A background in molecular biology or biotechnology would be advantageous but is        |
| the professor. Course topics are presented at the blackboard and using electronic slides. Teaching material and additional materials are provided by the Professor at the beginning of each lectures.  Compulsary  Distituti formativi specifici e risultati di apprendimento attesi  1. Knowledge and understanding  The course provides students with an in-depth understanding of the complex interactions between diet, the human host, and the gut microbiome. It covers fundamental concepts of the digestive system, gut microbial ecology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host—microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Insegnamenti propedeutici       |                                                                                                                                      |
| Disettivi formativi specifici e risultati di apprendimento risultati di app | Modalità di insegnamento        | the professor. Course topics are presented at the blackboard and using electronic slides. Teaching material and additional materials |
| The course provides students with an in-depth understanding of the complex interactions between diet, the human host, and the gut microbiome. It covers fundamental concepts of the digestive system, gut microbial ecology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host—microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Obbligo di frequenza            | compulsary                                                                                                                           |
| the complex interactions between diet, the human host, and the gut microbiome. It covers fundamental concepts of the digestive system, gut microbial ecology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host–microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Obiettivi formativi specifici e | Knowledge and understanding                                                                                                          |
| gut microbiome. It covers fundamental concepts of the digestive system, gut microbial ecology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host–microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | risultati di apprendimento      | The course provides students with an in-depth understanding of                                                                       |
| system, gut microbial ecology, diversity, and functionality, as well as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host–microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | attesi                          | the complex interactions between diet, the human host, and the                                                                       |
| as the mechanisms by which food components influence microbial composition and metabolism. Students will gain knowledge of host—microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | gut microbiome. It covers fundamental concepts of the digestive                                                                      |
| composition and metabolism. Students will gain knowledge of host—microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | system, gut microbial ecology, diversity, and functionality, as well                                                                 |
| host–microbe interactions, food-derived bioactive compounds, and microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | as the mechanisms by which food components influence microbial                                                                       |
| microbial metabolites with physiological relevance, along with the role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 | composition and metabolism. Students will gain knowledge of                                                                          |
| role of the microbiome in health and disease. Emphasis is placed on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | host-microbe interactions, food-derived bioactive compounds, and                                                                     |
| on state-of-the-art methodologies for microbiome research, including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                                                                                                                      |
| including omics-based approaches and in vitro/in vivo models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | ·                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                      |
| 2. Applying knowledge and understanding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | including omics-based approaches and in vitro/in vivo models.                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 2. Applying knowledge and understanding                                                                                              |

Students will learn to critically apply their knowledge to real-world contexts, such as designing dietary interventions targeting the microbiome, interpreting microbiome data from scientific studies, and evaluating food innovations intended to modulate gut microbial function. Through case studies, they will develop the ability to integrate microbiological, nutritional, and physiological data to assess the impact of specific foods, processing methods, and bioactive compounds on the human gut microbiome.

#### 3. Making judgements

The course fosters the capacity to make informed, evidence-based evaluations regarding the role of the diets and microbiome in health and disease. Students will be trained to critically analyse research articles, assess the quality and limitations of experimental designs, and distinguish between scientifically validated knowledge and unsupported claims in the public discourse on microbiomerelated nutrition. Ethical aspects of microbiome research and personalised nutrition will also be addressed.

#### Communication skills

Students will develop the ability to effectively communicate complex scientific concepts related to food components, food fermentation, and gut microbiome. Communication training will focus on clarity, accuracy, and contextual relevance, supported by visual data presentation and synthesis of scientific findings in oral format.

## Learning skills

The course enhances autonomous learning abilities by engaging students in self-directed literature review, critical discussions, and oral-based assignments. Students will be encouraged to investigate more about microbiome research and integrate new knowledge into their professional practice.

# Obiettivi formativi specifici e |n/a risultati di apprendimento attesi (ulteriori info.)

### Modalità di esame

The assessment of the student preparation is through an oral exam. The oral assessment includes: (i) the presentation, by the students, of a scientific work related to the topics of the course, (ii)

|                                             | questions to assess the knowledge and understanding of the course topics, and (iii) questions designed to assess the ability to transfer these skills to case studies.                                                                                                                                                                                               |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteri di valutazione                      | Students are asked to attend the oral exam.  It is relevant for the exam to: master the specific language (also with respect to teaching language); prove the understanding of the topics and learning skills; evaluate and establish relationships between topics; grow specific skills in critical thinking.  The exam mark will be assessed as follows: oral exam |
| Bibliografia obbligatoria                   | Depending on the case studies, the professor provides the related scientific articles. The supply of the articles is done at the beginning of each lecture and corresponding to each case studies.                                                                                                                                                                   |
| Bibliografia facoltativa                    | n/a                                                                                                                                                                                                                                                                                                                                                                  |
| Altre informazioni                          | n/a                                                                                                                                                                                                                                                                                                                                                                  |
| Obiettivi di Sviluppo<br>Sostenibile (SDGs) | Buona salute                                                                                                                                                                                                                                                                                                                                                         |