
Syllabus
Course Description

Course Title Agile Software Engineering

Course Code 76106

Course Title Additional

Scientific-Disciplinary Sector INF/01

Language English

Degree Course Master in Software Engineering

Other Degree Courses 
(Loaned)

Lecturers Prof. Xiaofeng Wang, 
Xiaofeng.Wang@unibz.it 
https://www.unibz.it/en/faculties/engineering/academic-
staff/person/31445

Teaching Assistant

Semester First semester

Course Year/s 1

CP 12

Teaching Hours 80

Lab Hours 40

Individual Study Hours 180

Planned Office Hours 36

Contents Summary The course belongs to the type “caratterizzanti – discipline 
informatiche”.

The course aims to equip students with both an agile mindset and 
practical professional skills essential for modern software 
engineering. It covers the foundations and core principles of agile 
software development, exploring various agile approaches and 
applying key engineering and project management practices in 
real-world contexts. Emphasis is placed on teamwork, agile 
collaboration techniques, and the challenges of scaling agile 
methods in distributed and large-scale projects. In parallel, the 

Course Topics



course introduces students to tools and techniques widely used in 
DevOps environments, including virtualization, containerization, 
microservice architectures, automation of the software lifecycle, 
continuous integration, deployment and delivery, as well as log, 
configuration, and system monitoring. Through this integrated 
approach, students gain a comprehensive understanding of 
contemporary software development practices.

Keywords Agility, DevOps, Sustainability, Quality.

Recommended Prerequisites

Propaedeutic Courses

Teaching Format The course combines interactive lectures with practical project 
work to provide both theoretical foundations and hands-on 
experience in agile software development.

Mandatory Attendance Attendance is not compulsory, but non-attending students have to 
contact the lecturer at the start of the course to agree on the 
modalities of the independent study.

Knowledge and understanding 
D1.5 know the fundamentals, techniques, and methods of design, 
customisation and implementation of software to support the 
automation of new-generation software systems for industrial 
production, company business, education, and society. 
D1.6 understand the elements of corporate and professional 
culture. 
 
Applying knowledge and understanding 
D2.2 know how to design and carry out empirical studies of 
software systems in order to acquire measurements of their 
behaviour and evaluate experimental hypotheses in different 
application fields, such as business, industry, education, or 
research. 
D2.4 ability to define an innovative technical solution to an 
application problem that respects technical, functional, and 
organisational constraints and requirements. 
 
Making judgements 
D3.2 ability to plan and re-plan a technical project activity and to 
carry it out within the defined deadlines and objectives. 
D3.3 ability to define work objectives compatible with the available 

Specific Educational 
Objectives and Learning 
Outcomes



time and resources. 
D3.4 ability to reconcile conflicting project objectives, find 
acceptable compromises within the limits of cost, resources, time, 
knowledge, or risk. 
D3.5 ability to work with broad autonomy, taking responsibility for 
projects and structures. 
 
Communication skills 
D4.3 ability to work and co-ordinate the work of a multi-disciplinary 
project team, to identify activities aimed at achieving the project 
objectives. 
D4.4 ability to prepare and deliver presentations with technical 
content in English for diverse audiences. 
D4.5 ability to interact and collaborate in the realisation of a 
project or research with peers and experts. 
 
Learning skills 
D5.2 ability to independently keep up to date with developments in 
the most important fields of information technology. 
D5.3 ability to extend incomplete knowledge with regard to the 
final objective of the project, in the context of a problem-solving 
activity.

Specific Educational 
Objectives and Learning 
Outcomes (additional info.)

The assessment for both courses in this module consists of two 
components: a project (50%) and an oral exam (50%). Attending 
students complete a team-based development project, while non-
attending students analyze an existing one. The oral exam 
evaluates individual theoretical understanding and the ability to 
discuss project outcomes. A passing project evaluation is required 
to access the oral exam, and both components must be passed to 
complete the module. A positively assessed project remains valid 
for three sessions. 
This assessment structure supports the learning outcomes of this 
course as follows. It contributes to the acquisition of knowledge 
and understanding (D1.5, D1.6) by engaging students in the 
application of software development techniques and fostering 
reflection on corporate and professional contexts. It enhances the 

Assessment



ability to apply knowledge (D2.2, D2.4) by requiring the design and 
empirical evaluation of software solutions that respect technical 
and organizational constraints. The project work also develops 
judgment skills (D3.2–D3.5) as students plan, manage, and adapt 
project activities under real-world limitations while taking 
increasing responsibility for their work. Communication skills 
(D4.3–D4.5) are strengthened through teamwork, technical 
discussions, and oral presentations in English. Finally, the course 
promotes learning skills (D5.2, D5.3) by encouraging students to 
independently acquire new knowledge and address open problems 
throughout the project and oral examination.

Evaluation Criteria For both attending and non-attending students, the project work is 
evaluated based on the quality of the solution or analysis. For 
attending students, the quality of teamwork is also considered. The 
oral exam evaluates the ability to summarize, assess, and relate 
different topics, along with the clarity and precision of the 
responses.

Required Readings
(See module descriptions)

Supplementary Readings
(See module descriptions)

Further Information (See module descriptions)

Sustainable Development 
Goals (SDGs)

Decent work and economic growth, Responsible consumption and 
production, Industry, innovation and infrastructure

Course Module
Course Constituent Title Agile Software Engineering M1 - Agile Processes and Practices

Course Code 76106A

Scientific-Disciplinary Sector INF/01

Language English

Lecturers

Teaching Assistant

Semester

CP 6

Responsible Lecturer

Teaching Hours 40



Lab Hours 20

Individual Study Hours 90

Planned Office Hours 18

Contents Summary • Origin and evolution of agile software development 
• Major agile frameworks and key agile practices 
• Scaling agile: distributed and/or large agile software development 
People-centric and teamwork in agile software development 
• Continuous experimentation using agile approaches 
• AI-enabled agile processes

Course Topics The Agile Software Development course aims to instill an agile 
mindset in future software engineers and enhance their ability to 
work effectively on software development projects using agile 
methods. The course focuses on understanding the foundations 
and core principles of agile software development, exploring 
various agile approaches, and applying key engineering and project 
management practices in real-world contexts. It also emphasizes 
improving teamwork through agile collaboration techniques and 
addresses how to scale agile development beyond its typical 
settings, including in distributed and large-scale projects.

Teaching Format The course combines interactive lectures with practical project 
work to provide both theoretical foundations and hands-on 
experience in agile software development.

Required Readings
- Agile Manifesto: http://agilemanifesto.org/

- Agile Essentials on Agile Alliance website: 
https://www.agilealliance.org/agile-essentials/

- Modern Agile: https://modernagile.org/

- Subject Librarian: David Gebhardi, David.Gebhardi@unibz.it

Supplementary Readings
- Highsmith, Jim. Agile Software Development Ecosystems. 
Boston, 2002.

- Research papers on agile software development, which will be 
distributed during the lectures

Course Module
Course Constituent Title Agile Software Engineering M2 - Continuous Integration and 

Delivery



Course Code 76106B

Scientific-Disciplinary Sector INF/01

Language English

Lecturers

Teaching Assistant

Semester

CP 6

Responsible Lecturer

Teaching Hours 40

Lab Hours 20

Individual Study Hours 90

Planned Office Hours 18

Contents Summary • Configuration Management 
• Containerization with Docker & Kubernetes 
• Applied Microservice-oriented Software Engineering 
• Monolith to Microservices Migration 
• Continuous Integration & Delivery Techniques 
• DevOps as a Software Development Paradigm

Course Topics The course is designed to equip students with practical 
professional skills relevant to modern software engineering. It 
focuses on the application of development techniques and tools 
commonly used in DevOps environments, including virtualization 
and containerization, microservice architectures, automation of the 
software lifecycle, continuous integration, deployment and delivery, 
as well as log management, configuration management, and 
system monitoring.

Teaching Format The course combines interactive lectures with practical project 
work to provide both theoretical foundations and hands-on 
experience in agile software development.

Required Readings
Lecture notes will be handed out during the course.

Subject Librarian: David Gebhardi, David.Gebhardi@unibz.it

- Robert C Martin: Clean Architecture: A Craftsman’s Guide to 
Software Structure and Design. Pearson (2017)

Supplementary Readings



- Vaughn Vernon: Domain-Driven Design Distilled. Addison-Wesley 
Professional (2016)


