
Syllabus
Kursbeschreibung

Titel der Lehrveranstaltung Agile Software Engineering

Code der Lehrveranstaltung 76106

Zusätzlicher Titel der 
Lehrveranstaltung

Wissenschaftlich-
disziplinärer Bereich

INFO-01/A

Sprache Englisch

Studiengang Master in Software Engineering

Andere Studiengänge (gem. 
Lehrveranstaltung)

Dozenten/Dozentinnen Prof. Xiaofeng Wang, 
Xiaofeng.Wang@unibz.it 
https://www.unibz.it/en/faculties/engineering/academic-
staff/person/31445

Wissensch. 
Mitarbeiter/Mitarbeiterin

Semester Erstes Semester

Studienjahr/e 1

KP 12

Vorlesungsstunden 80

Laboratoriumsstunden 40

Stunden für individuelles 
Studium

180

Vorgesehene Sprechzeiten 36

Inhaltsangabe The course belongs to the type “caratterizzanti – discipline 
informatiche”.

The course aims to equip students with both an agile mindset and 
practical professional skills essential for modern software 
engineering. It covers the foundations and core principles of agile 
software development, exploring various agile approaches and 

Themen der 
Lehrveranstaltung



applying key engineering and project management practices in 
real-world contexts. Emphasis is placed on teamwork, agile 
collaboration techniques, and the challenges of scaling agile 
methods in distributed and large-scale projects. In parallel, the 
course introduces students to tools and techniques widely used in 
DevOps environments, including virtualization, containerization, 
microservice architectures, automation of the software lifecycle, 
continuous integration, deployment and delivery, as well as log, 
configuration, and system monitoring. Through this integrated 
approach, students gain a comprehensive understanding of 
contemporary software development practices.

Stichwörter Agility, DevOps, Sustainability, Quality.

Empfohlene 
Voraussetzungen

Propädeutische 
Lehrveranstaltungen

Unterrichtsform The course combines interactive lectures with practical project 
work to provide both theoretical foundations and hands-on 
experience in agile software development.

Anwesenheitspflicht Attendance is not compulsory, but non-attending students have to 
contact the lecturer at the start of the course to agree on the 
modalities of the independent study.

Knowledge and understanding 
D1.5 know the fundamentals, techniques, and methods of design, 
customisation and implementation of software to support the 
automation of new-generation software systems for industrial 
production, company business, education, and society. 
D1.6 understand the elements of corporate and professional 
culture. 
 
Applying knowledge and understanding 
D2.2 know how to design and carry out empirical studies of 
software systems in order to acquire measurements of their 
behaviour and evaluate experimental hypotheses in different 
application fields, such as business, industry, education, or 
research. 
D2.4 ability to define an innovative technical solution to an 
application problem that respects technical, functional, and 

Spezifische Bildungsziele 
und erwartete 
Lernergebnisse



organisational constraints and requirements. 
 
Making judgements 
D3.2 ability to plan and re-plan a technical project activity and to 
carry it out within the defined deadlines and objectives. 
D3.3 ability to define work objectives compatible with the available 
time and resources. 
D3.4 ability to reconcile conflicting project objectives, find 
acceptable compromises within the limits of cost, resources, time, 
knowledge, or risk. 
D3.5 ability to work with broad autonomy, taking responsibility for 
projects and structures. 
 
Communication skills 
D4.3 ability to work and co-ordinate the work of a multi-disciplinary 
project team, to identify activities aimed at achieving the project 
objectives. 
D4.4 ability to prepare and deliver presentations with technical 
content in English for diverse audiences. 
D4.5 ability to interact and collaborate in the realisation of a 
project or research with peers and experts. 
 
Learning skills 
D5.2 ability to independently keep up to date with developments in 
the most important fields of information technology. 
D5.3 ability to extend incomplete knowledge with regard to the 
final objective of the project, in the context of a problem-solving 
activity.

Spezifisches Bildungsziel 
und erwartete 
Lernergebnisse (zusätzliche 
Informationen)

The assessment for both courses in this module consists of two 
components: a project (50%) and an oral exam (50%). Attending 
students complete a team-based development project, while non-
attending students analyze an existing one. The oral exam 
evaluates individual theoretical understanding and the ability to 
discuss project outcomes. A passing project evaluation is required 
to access the oral exam, and both components must be passed to 

Art der Prüfung



complete the module. A positively assessed project remains valid 
for three sessions. 
This assessment structure supports the learning outcomes of this 
course as follows. It contributes to the acquisition of knowledge 
and understanding (D1.5, D1.6) by engaging students in the 
application of software development techniques and fostering 
reflection on corporate and professional contexts. It enhances the 
ability to apply knowledge (D2.2, D2.4) by requiring the design and 
empirical evaluation of software solutions that respect technical 
and organizational constraints. The project work also develops 
judgment skills (D3.2–D3.5) as students plan, manage, and adapt 
project activities under real-world limitations while taking 
increasing responsibility for their work. Communication skills 
(D4.3–D4.5) are strengthened through teamwork, technical 
discussions, and oral presentations in English. Finally, the course 
promotes learning skills (D5.2, D5.3) by encouraging students to 
independently acquire new knowledge and address open problems 
throughout the project and oral examination.

Bewertungskriterien For both attending and non-attending students, the project work is 
evaluated based on the quality of the solution or analysis. For 
attending students, the quality of teamwork is also considered. The 
oral exam evaluates the ability to summarize, assess, and relate 
different topics, along with the clarity and precision of the 
responses.

Pflichtliteratur
(See module descriptions)

Weiterführende Literatur
(See module descriptions)

Weitere Informationen (See module descriptions)

Ziele für nachhaltige 
Entwicklung (SDGs)

Menschenwürdige Arbeit und Wirtschaftswachstum, Nachhaltiger 
Konsum und Produktion, Industrie, Innovation und Infrastruktur

Kursmodul
Titel des Bestandteils der 
Lehrveranstaltung

Agile Processes and Practices

Code der Lehrveranstaltung 76106A

Wissenschaftlich-
disziplinärer Bereich

INFO-01/A



Sprache Englisch

Dozenten/Dozentinnen

Wissensch. 
Mitarbeiter/Mitarbeiterin

Semester Erstes Semester

KP 6

Verantwortliche/r Dozent/in

Vorlesungsstunden 40

Laboratoriumsstunden 20

Stunden für individuelles 
Studium

90

Vorgesehene Sprechzeiten 18

Inhaltsangabe • Origin and evolution of agile software development 
• Major agile frameworks and key agile practices 
• Scaling agile: distributed and/or large agile software development 
People-centric and teamwork in agile software development 
• Continuous experimentation using agile approaches 
• AI-enabled agile processes

Themen der 
Lehrveranstaltung

The Agile Software Development course aims to instill an agile 
mindset in future software engineers and enhance their ability to 
work effectively on software development projects using agile 
methods. The course focuses on understanding the foundations 
and core principles of agile software development, exploring 
various agile approaches, and applying key engineering and project 
management practices in real-world contexts. It also emphasizes 
improving teamwork through agile collaboration techniques and 
addresses how to scale agile development beyond its typical 
settings, including in distributed and large-scale projects.

Unterrichtsform The course combines interactive lectures with practical project 
work to provide both theoretical foundations and hands-on 
experience in agile software development.

- Agile Manifesto: http://agilemanifesto.org/

- Agile Essentials on Agile Alliance website: 
https://www.agilealliance.org/agile-essentials/

- Modern Agile: https://modernagile.org/

Pflichtliteratur



- Subject Librarian: David Gebhardi, David.Gebhardi@unibz.it

Weiterführende Literatur
- Highsmith, Jim. Agile Software Development Ecosystems. 
Boston, 2002.

- Research papers on agile software development, which will be 
distributed during the lectures

Kursmodul
Titel des Bestandteils der 
Lehrveranstaltung

Continuous Integration and Delivery

Code der Lehrveranstaltung 76106B

Wissenschaftlich-
disziplinärer Bereich

INFO-01/A

Sprache Englisch

Dozenten/Dozentinnen

Wissensch. 
Mitarbeiter/Mitarbeiterin

Semester Erstes Semester

KP 6

Verantwortliche/r Dozent/in

Vorlesungsstunden 40

Laboratoriumsstunden 20

Stunden für individuelles 
Studium

90

Vorgesehene Sprechzeiten 18

Inhaltsangabe • Configuration Management 
• Containerization with Docker & Kubernetes 
• Applied Microservice-oriented Software Engineering 
• Monolith to Microservices Migration 
• Continuous Integration & Delivery Techniques 
• DevOps as a Software Development Paradigm

The course is designed to equip students with practical 
professional skills relevant to modern software engineering. It 
focuses on the application of development techniques and tools 
commonly used in DevOps environments, including virtualization 

Themen der 
Lehrveranstaltung



and containerization, microservice architectures, automation of the 
software lifecycle, continuous integration, deployment and delivery, 
as well as log management, configuration management, and 
system monitoring.

Unterrichtsform The course combines interactive lectures with practical project 
work to provide both theoretical foundations and hands-on 
experience in agile software development.

Pflichtliteratur
Lecture notes will be handed out during the course.

Subject Librarian: David Gebhardi, David.Gebhardi@unibz.it

Weiterführende Literatur
- Robert C Martin: Clean Architecture: A Craftsman’s Guide to 
Software Structure and Design. Pearson (2017)

- Vaughn Vernon: Domain-Driven Design Distilled. Addison-Wesley 
Professional (2016)


