

Syllabus

Descrizione corso

Titolo insegnamento	Sistemi e controllo
Codice insegnamento	42188
Titolo aggiuntivo	
Settore Scientifico- Disciplinare	ING-INF/04
Lingua	Italiano
Corso di Studio	Corso di laurea in Ingegneria Industriale Meccanica
Altri Corsi di Studio (mutuati)	
Docenti	prof. Marco Frego, Marco.Frego@unibz.it https://www.unibz.it/en/faculties/engineering/academic-staff/person/44497
Assistente	
Semestre	Secondo semestre
Anno/i di corso	2, 3
CFU	12
Ore didattica frontale	36
Ore di laboratorio	24
Ore di studio individuale	0
Ore di ricevimento previste	
Sintesi contenuti	L'insegnamento del corso di Sistemi e Controllo è una materia di approfondimento nell'ambito del corso di laurea triennale in Ingegneria Industriale e Meccanica e ha l'obiettivo di fornire competenze professionali e conoscenze metodologiche relative alla teoria dei sistemi e del controllo dei sistemi lineari nel dominio della frequenza.
	Modulo 1: 1. Modellizzazione dei sistemi dinamici nel dominio della frequenza

	 Risposta dinamica del sistema Stabilità dei sistemi lineari Analisi dei sistemi e progetto del controllore mediante il luogo delle radici Analisi dei sistemi e progetto del controllore basati sulla risposta in frequenza Controllo digitale (se il tempo lo consente) Modulo 2: Introduzione a Matlab Introduzione di sistemi dinamici nel dominio della frequenza con il Control System Toolbox Analisi e progettazione assistita da computer in Matlab/Simulink
Argomenti dell'insegnamento	5. Esperimenti reali di controllo in laboratorio Il primo modulo comprende 36 ore di lezione frontale e 24 ore di esercitazioni in aula, dedicate alla teoria dei sistemi e del controllo dei sistemi lineari nel dominio della frequenza. Il secondo modulo, della durata complessiva di 60 ore, prevede un'introduzione al software di simulazione Matlab/Simulink e una serie di esperimenti di controllo automatico in laboratorio. In tali esperimenti, sistemi meccatronici e fluidodinamici vengono inizialmente simulati e successivamente controllati in prove sperimentali reali.
Parole chiave	controlli, sistemi, automatica, Matlab
Prerequisiti	Consigliabile avere seguito Fisica 1 e 2, Analisi Matematica 1 e 2, Geometria
Insegnamenti propedeutici	
Modalità di insegnamento	Lezioni frontali alla lavagna con esercitazioni in classe.
Obbligo di frequenza	Fortemente consigliata.
Obiettivi formativi specifici e risultati di apprendimento attesi	Il corso è articolato in due moduli: MODULO 1: Teoria di Sistemi e Controllo Il primo modulo comprende 36 ore di lezione frontale e 24 ore di esercitazioni in aula, dedicate alla teoria dei sistemi e del controllo dei sistemi lineari nel dominio della frequenza. MODULO 2: Laboratorio di Sistemi e Controllo Il secondo modulo, della durata complessiva di 60 ore, prevede un'introduzione al software di simulazione Matlab/Simulink e una

	serie di esperimenti di controllo automatico in laboratorio. In tali esperimenti, sistemi meccatronici e fluidodinamici vengono inizialmente simulati e successivamente controllati in prove sperimentali reali.
	Intended Learning Outcomes (ILO): Conoscenza e comprensione 1. Conoscere e comprendere le leggi basilari dell'elettrotecnica e i fenomeni elettrici, con particolare attenzione alle applicazioni industriali. 2. Conoscere la teoria delle macchine elettriche e comprendere il
	principio della conversione elettromeccanica. Capacità di applicare conoscenza e comprensione 3. Capacità di risolvere esercizi numerici di reti elettriche anche relativi ad applicazioni pratiche. 4. Capacità di progettare piccoli sistemi e applicazioni reali, e di comprendere le scelte tecniche che sono alla base delle principali applicazioni elettriche.
	Autonomia di giudizio 5. Capacità nella scelta della soluzione tecnologica più adatta e vantaggiosa per una specifica applicazione. Capacità comunicativa
	6. Abilità di presentare le competenze acquisite con lessico proprio e pertinente alla disciplina.
	Capacità di apprendimento 7. Capacità di estendere le proprie conoscenze tramite strumenti di acquisizione di informazioni tecniche e di aggiornamento. 8. Capacità di analizzare sistemi più complessi.
Obiettivi formativi specifici e risultati di apprendimento attesi (ulteriori info.)	
Modalità di esame	L'esame copre gli argomenti del MODULO 1 e del MODULO 2 ed ha la seguente struttura:
	MODULO 1 (50% dell'esame finale):

	Scritto: 180 minuti; ILO valutati: 1-5.
	MODULO 2 (50% dell'esame finale): Scritto: 120 minuti; ILO valutati: 1-5.
Criteri di valutazione	Il voto finale è calcolato come media dei voti dei due moduli. L'esame è considerato superato quando entrambi i voti sono validi, ovvero compresi tra 18 e 30. In caso contrario, i singoli voti validi (se presenti) vengono conservati per tutte e 3 le sessioni d'esame regolari, fino a quando anche tutte le altre parti non saranno completate con un voto valido. Dopo le 3 sessioni d'esame regolari, tutti i voti diventano non validi.
	 MODULO 1: L'esame scritto consiste in diversi compiti matematici da risolvere, distribuiti tra i vari argomenti trattati. Verranno valutati: o la correttezza dell'approccio e dei passaggi matematici della soluzione, il calcolo dei risultati numerici; o la correttezza delle risposte fornite e delle argomentazioni presentate e la terminologia utilizzata.
	• MODULO 2: L'esame comprende compiti da risolvere con Matlab e Simulink e richiede la conoscenza dell'uso del software di simulazione, nonché la conoscenza dei metodi di teoria di controllo dei sistemi lineari nel dominio della frequenza del Modulo 1. Verrà valutata la correttezza formale e metodologica delle risposte, nonché i calcoli e la rappresentazione grafica dei risultati.
Bibliografia obbligatoria	Control Systems Engineering – Global Edition, Norman S. Nise, Wiley, 2017 (based on 7th edition from 2015). Slides del corso
Bibliografia facoltativa	Feedback Control of Dynamic Systems – Global Edition, Gene F. Franklin, J. D. Powell, A. Emami-Naeini, Pearson, Global Edition, 2015 (based on 7th edition from 2015)

	Modern Control Engineering – International edition 5/E, Katsuhiko Ogata, Pearson, 2010.
	Automatic Control Systems, Farid Golnaraghi, Benjamin C. Kuo, 10th Edition, Mc Graw Hill Education, 2017.
	Modern Control Systems, Global Edition 13/E, Dorf & Bishop, Pearson, 2018.
	A MATLAB Primer for Technical Programming in Materials Science and Engineering - Leonid Burstein -Woodhead Publishing Elsevier – 2020
	MATLAB A Practical Introduction to Programming and Problem Solving - Stormy Attaway - Second Edition - Butterworth-Heinemann Elsevier – 2012
	MATLAB, Simulink, Stateflow - Angermann, Rau, Beuschel, Wohlfarth -De Gruyter (in German) 9th ed. 2017
Altre informazioni	Software utilizzati: Matlab/Simulink.
Obiettivi di Sviluppo Sostenibile (SDGs)	Istruzione di qualità

Modulo del corso

Titolo della parte costituente del corso	Sistemi e Controllo
Codice insegnamento	42188A
Settore Scientifico- Disciplinare	ING-INF/04
Lingua	Italiano
Docenti	prof. Marco Frego, Marco.Frego@unibz.it https://www.unibz.it/en/faculties/engineering/academic- staff/person/44497

Assistente	
Semestre	Secondo semestre
CFU	6
Docente responsabile	
Ore didattica frontale	36
Ore di laboratorio	24
Ore di studio individuale	90
Ore di ricevimento previste	
Sintesi contenuti	 Modellizzazione dei sistemi dinamici nel dominio della frequenza Risposta dinamica del sistema Stabilità dei sistemi lineari Analisi dei sistemi e progetto del controllore mediante il luogo delle radici Analisi dei sistemi e progetto del controllore basati sulla risposta in frequenza Controllo digitale (se il tempo lo consente).
Argomenti dell'insegnamento	Il primo modulo comprende 36 ore di lezione frontale e 24 ore di esercitazioni in aula, dedicate alla teoria dei sistemi e del controllo dei sistemi lineari nel dominio della frequenza.
Modalità di insegnamento	Lezioni frontali alla lavagna con esercitazioni numeriche su reti elettriche e su semplici bilanci energetici di sistemi elettrici.
Bibliografia obbligatoria	Control Systems Engineering – Global Edition, Norman S. Nise, Wiley, 2017 (based on 7th edition from 2015) Slides del Corso
Bibliografia facoltativa	Feedback Control of Dynamic Systems – Global Edition, Gene F. Franklin, J. D. Powell, A. Emami-Naeini, Pearson, Global Edition, 2015 (based on 7th edition from 2015) Modern Control Engineering – International edition 5/E, Katsuhiko Ogata, Pearson, 2010.

Automatic Control Systems, Farid Golnaraghi, Benjamin C. Kuo, 10th Edition, Mc Graw Hill Education, 2017.
Modern Control Systems, Global Edition 13/E, Dorf & Bishop, Pearson, 2018.
A MATLAB Primer for Technical Programming in Materials Science and Engineering - Leonid Burstein -Woodhead Publishing Elsevier – 2020
MATLAB A Practical Introduction to Programming and Problem Solving - Stormy Attaway - Second Edition - Butterworth-Heinemann Elsevier – 2012

MATLAB, Simulink, Stateflow - Angermann, Rau, Beuschel, Wohlfarth -De Gruyter (in German) 9th ed. 2017

Modulo del corso

Titolo della parte costituente del corso	Sistemi e Controllo Laboratorio
Codice insegnamento	42188B
Settore Scientifico- Disciplinare	ING-INF/04
Lingua	Tedesco
Docenti	prof. Marco Frego, Marco.Frego@unibz.it https://www.unibz.it/en/faculties/engineering/academic- staff/person/44497
Assistente	
Semestre	Non definito
CFU	6
Docente responsabile	
Ore didattica frontale	0
Ore di laboratorio	60

Ore di studio individuale	0
Ore di ricevimento previste	36
Sintesi contenuti	 Introduzione a Matlab Introduzione a Simulink Simulazione di sistemi dinamici nel dominio della frequenza con il Control System Toolbox Analisi e progettazione assistita da computer in Matlab/Simulink Esperimenti reali di controllo in laboratorio
Argomenti dell'insegnamento	Il secondo modulo, della durata complessiva di 60 ore, prevede un'introduzione al software di simulazione Matlab/Simulink e una serie di esperimenti di controllo automatico in laboratorio. In tali esperimenti, sistemi meccatronici e fluidodinamici vengono inizialmente simulati e successivamente controllati in prove sperimentali reali.
Modalità di insegnamento	Le lezioni sono suddivise tra un'introduzione al software di simulazione Matlab/Simulink in aula ed esperimenti in laboratorio.
Bibliografia obbligatoria	Slide del corso e Control Systems Engineering – Global Edition, Norman S. Nise, Wiley, 2017 (basato sulla 7a edizione del 2015).
Bibliografia facoltativa	Feedback Control of Dynamic Systems – Global Edition, Gene F. Franklin, J. D. Powell, A. Emami-Naeini, Pearson, Global Edition, 2015 (based on 7th edition from 2015)
	Modern Control Engineering – International edition 5/E, Katsuhiko Ogata, Pearson, 2010.
	Automatic Control Systems, Farid Golnaraghi, Benjamin C. Kuo, 10th Edition, Mc Graw Hill Education, 2017.
	Modern Control Systems, Global Edition 13/E, Dorf & Bishop, Pearson, 2018.
	A MATLAB Primer for Technical Programming in Materials Science and Engineering - Leonid Burstein -Woodhead Publishing Elsevier – 2020

MATLAB A Practical Introduction to Programming and Problem Solving - Stormy Attaway - Second Edition - Butterworth-Heinemann Elsevier – 2012
MATLAB, Simulink, Stateflow - Angermann, Rau, Beuschel, Wohlfarth -De Gruyter (in German) 9th ed. 2017