Syllabus ### Course Description | Course Title | Industrial electrical applications | |----------------------------------|---| | Course Code | 42156 | | Course Title Additional | | | Scientific-Disciplinary Sector | ING-IND/32 | | Language | English | | Degree Course | Bachelor in Industrial and Mechanical Engineering | | Other Degree Courses
(Loaned) | | | Lecturers | Dott. Emanuele Fornasiero, Emanuele.Fornasiero@unibz.it https://www.unibz.it/en/faculties/engineering/academic- staff/person/40134 | | Teaching Assistant | | | Semester | First semester | | Course Year/s | 3 | | СР | 6 | | Teaching Hours | 60 | | Lab Hours | 0 | | Individual Study Hours | 90 | | Planned Office Hours | 18 | | Contents Summary | The course covers the topics of electrical power generation, distribution, conversion and usage, from a system level point of view. The main topics are as follows: - Production, transmission and distribution of electrical energy; sizing of electrical distribution lines - Electrical energy static conversion - Principles of operation of electrical machines - Applications and choice of electrical motors for simple applications | | | Application examples will be also addressed. Other sub-topics are about thermal aspects, grid harmonics, electrical safety. | | Course Topics | Introduction about the role of electrical energy in nowadays world with some focus on primary energy sources Production, transmission and distribution of electrical energy analysing the grid structure and with hints about electrical energy production Comparison between different ways to transmit electrical energy and role of the three phase systems Components of the transmission and distribution lines, and line models Criteria for sizing electrical distribution lines with examples | |---|---| | | Power factor compensation Electrical safety hints, low voltage distribution systems and their main characteristics Electrical energy static conversion, introducing rectifiers, inverters, switching power supply devices, choppers and their princicple of working | | | Principles of operation of electrical machines DC machines, structure, principle of working and main characteristics AC machines, structure, principle of working and main characteristics | | | Induction (asynchronous) machines Synchronous machines Applications and choice of electrical motors for simple applications Complementary topics: harmonic analysis on networks and associated problems, thermal considerations on electrical systems, | | Keywords | devices and machines. Electrical energy, electrical machines, static converters, electrical systems, electrical energy transmission | | Recommended Prerequisites | Elettrotecnica e macchine elettriche | | Propaedeutic Courses | | | Teaching Format | Frontal lectures, exercises, practical pc activities. | | Mandatory Attendance | Not mandatory | | Specific Educational Objectives and Learning Outcomes | The aim of the course is to provide the most significant elements on the applications of electrical engineering concepts. Students will learn the basics of electrical systems, machines, | | | converters and plants, also dealing with the related safety issues. | By means of case studies, energy efficiency and costs aspects will also be considered, considering both classical and innovative applications. #### Knowledge and understanding: - Master the most important concepts about industrial electrical applications - understand the design principles of electrical equipment and installations. #### Applying Knowledge and understanding: Using proper criteria and tools for designing or choosing electrical systems and devices. The elements learnt are applied to real world case studies. #### Making judgments: Ability to select the more adequate electrical system for a certain industrial application. #### Communication skills: - Acquisition of the field related technical terminology. - Ability to describe the state of the art of the technology adopted in electrical industrial systems. #### Learning skills: Ability to learn autonomously is improved by acquiring analytical approaches, inter disciplinary skills and by reading and understanding scientific and technical documentation. # Specific Educational Objectives and Learning Outcomes (additional info.) #### Knowledge and understanding: - 1 Master the most important concepts about industrial electrical applications - 2 understand the design principles of electrical equipment and installations. #### Applying Knowledge and understanding: 3 Using proper criteria and tools for designing or choosing electrical systems and devices. The elements learnt are applied to real world case studies. #### Making judgments: 4 Ability to select the more adequate electrical system for a certain industrial application. #### Communication skills: | | 5 Acquisition of the field related technical terminology. 6 Ability to describe the state of the art of the technology adopted in electrical industrial systems. | |------------------------|---| | | Learning skills: 7 Ability to learn autonomously is improved by acquiring analytical approaches, inter disciplinary skills and by reading and understanding scientific and technical documentation. | | Assessment | The assessment of the course is by a written exam and a quiz. The written exam comprises 3 numerical exercises, one about the design of an electric line, one about the choice of an electric motor for a specific application, and one chosen from one of the following topics: i) dc machines; ii) static converters; iii) harmonic suppression. The quiz part consists of 20 generic theory questions covering the theoretical part of the course (multiple choice, open answer, true or false). - Formative Assessment: nof foreseen - Summative Assessment: 50% written exam, exercises: 3 exercises (3 hours); ILOs assessed: 1,2,3,4; 50% written exam, theory: 20 multiple choice questions (1 hour); ILOs assessed: 5, 6. | | Evaluation Criteria | Final mark, 50% written part, 50% theory questions. Relevant for assessment: correctness and clarity of written answers, correct exercise results, proper explanation of the assumptions. | | Required Readings | There is no single textbook covering the entire course content. The material is collected from various sources, which will be announced and delivered during the course. | | Supplementary Readings | Chitarin, G.; Gnesotto, F.; Guarnieri, M.; Maschi, A. & Stella, A. Elettrotecnica 2: Applicazioni, Editrice Esculapio Fauri, Gnesotto, Marchesi, Maschio, "Lezioni di Elettrotecnica – Applicazioni elettriche", Editrice Esculapio Giorgio Rizzoni, "Elettrotecnica: principi ed applicazioni", edizione italiana a cura di Paolo Gubian, Francesco Vacca, Silvano Vergura, McGraw-Hill Hughes, A. Electric motor and drives, Elsevier | | Further Information | Software used: Matlab, Simulink | | Sustainable Development | Quality education, Industry, innovation and infrastructure, | |-------------------------|---| | Goals (SDGs) | Affordable and clean energy |