Syllabus ## Course Description | Carrier Till a | Laboratoria C Mada di anciena de Charatoria | |----------------------------------|---| | Course Title | Laboratory of Mechanics of Structures | | Course Code | 42638 | | Course Title Additional | | | Scientific-Disciplinary Sector | NN | | Language | German | | Degree Course | Professional Bachelor in Wood Technology | | Other Degree Courses
(Loaned) | | | Lecturers | Dott. Thomas Franz Xaver Moosbrugger, | | | ThomasFranzXaver.Moosbrugger@unibz.it | | | https://www.unibz.it/en/faculties/engineering/academic-
staff/person/42499 | | Teaching Assistant | Stail/person/42499 | | _ | | | Semester | First semester | | Course Year/s | 2 | | СР | 2 | | Teaching Hours | 0 | | Lab Hours | 20 | | Individual Study Hours | 30 | | Planned Office Hours | 6 | | Contents Summary | practical determination of material parameters using simple fracture tests | | | 2. project work "Timber construction" | | | a. Design of a simple timber construction | | | b. Model assumptions | | | c. Structural analysis3. Dimensioning of the designed structure. | | Course Torston | | | Course Topics | Elaboration of the fundamentals for the design of timber structures | | | based on the basic mechanical principles of elastostatics. | | | Insight into the essential standards of Eurocode 0, 1, and 5. | | Keywords | Statics, structural design, ULS and SLS verification, timber | |---|---| | | construction, laboratory exercises | | Recommended Prerequisites | None. | | Propaedeutic Courses | | | Teaching Format | Seminar work supervised in the lecture room. | | Mandatory Attendance | Recommended. | | Specific Educational Objectives and Learning Outcomes | Specific educational objectives The course aims to teach participants the basic formal relationships of structural design, primarily in timber construction, and practical methods for solving problems in these contexts. | | | Knowledge and understanding: Understanding of the basic design concept for load-bearing structures - based on limit states - and the necessity of safety factors. Basic knowledge of modeling buildings and load-bearing structures in structural engineering. Applying knowledge and understanding: Basic knowledge of real load-bearing behavior and necessary simplified model approaches Application of theoretical content through exercises, case studies and project work as well as understanding the problems presented. Theoretical content is illustrated by means of calculation exercises using practical examples. Making judgments: Based on what they have learned, students are able to describe the function of real load-bearing systems. Communication skills: The students are able to actively participate in subject-specific discussions using the specific terminology based on what they have learned. | | | Learning skills Students learn the subject matter both through frontal teaching (theoretical part) and through exercises in the lecture hall (practical exercises) Students are able to expand their acquired knowledge through self-taught self-study and consultation of scientific and technical texts. | | Specific Educational | | |--------------------------------------|--| | Objectives and Learning | | | Outcomes (additional info.) | | | Assessment | Assessment of the written seminar thesis as part of the attendance in the laboratory units and final presentation of the small project. | | Evaluation Criteria | Assessment: pass/fail. The final mark is determined 100% from the results of the laboratory/seminar work. Criteria for assessment: Correctness of the individual tasks, impression and cooperation in the context of the laboratory units, impression and correctness of the written laboratory work. | | Required Readings | Teaching material L-P03. | | Supplementary Readings | Colling, F.: Holzbau: <i>Grundlagen und Bemessung nach EC 5</i> ,
Springer Vieweg; Auflage: 5., überarb. und akt. Aufl. 2016 (7.
Oktober 2016), ISBN-10: 3658142324 | | | Niemz, P., Sonderegger, Walter, U.: 2011, Physik des | | | Holzes. Hanser Fachbuchverlag, ISBN 978-3-446- | | | 876 44526-0, doi:10.3139/9783446445468. | | | ÖNORM EN 1995-1-1 2019 06 01: Eurocode 5: Bemessung und
Konstruktion von Holzbauten - Teil 1-1: Allgemeines - Allgemeine
Regeln und Regeln für den Hochbau (konsolidierte Fassung), 2019. | | Further Information | | | Sustainable Development Goals (SDGs) | Industry, innovation and infrastructure |