Syllabus ## Course Description | Course Title | Laboratory of Physics applied to Mechanics | |--------------------------------|--| | Course Code | 42606 | | Course Title Additional | | | Scientific-Disciplinary Sector | NN | | Language | German | | Degree Course | Professional Bachelor in Wood Technology | | | Professional bachelor in wood rechnology | | Other Degree Courses (Loaned) | | | Lecturers | | | Teaching Assistant | | | Semester | Second semester | | Course Year/s | 1 | | СР | 4 | | Teaching Hours | 0 | | Lab Hours | 40 | | Individual Study Hours | 60 | | Planned Office Hours | 12 | | Contents Summary | Theoretical exercises on classical physics Practical exercises on Newtonian mechanics, including mechanical forces, energy, momentum, electrical phenomena and thermodynamics | | Course Topics | | | Keywords | | | Recommended Prerequisites | | | Propaedeutic Courses | | | Teaching Format | Exercises, labs, and project project work. | | Mandatory Attendance | Strongly recommended. | | | A student report based on the activities and experiments performed during the laboratory sessions is the basis for the | | | assessment of the course. The evaluation for non-attending students is based on a 30 min presentation and a 30 min oral exam. | |--|---| | Specific Educational Objectives and Learning Outcomes | This course supports the lecture 42605 Physics, and provides theoretical as well as practical exercises to develop problem solving skills related to the same topics. | | | Knowledge and understanding Knowledge and understanding of physical laws of: Mechanics Thermodynamics Applying knowledge and understanding Ability to analyse and simple experiments on mechanics, thermodynamics. Making judgements Students are expected to develop the ability to judge the plausibility of measurements. Communication skills Further development of a quantitative, technical, and scientific terminology to express ideas and opinions about physical phenomena. Ability to visualize and present results. Ability to learn Development of an analytic attitude enabling the student to | | | divide a problem into sub-tasks which can be solved using previously acquired knowledge. | | Specific Educational Objectives and Learning Outcomes (additional info.) | | | Assessment | Formative assessment: Form: In-class exercises Length /duration: Continuously as part of course-accompanying exercises ILOs assessed: 1-4, 6 | | | Summative assessment for attending students: Form: Report Length /duration: 5 pages ILOs assessed: 1-6 | | | - | |---|---| | | Summative assessment for non attending students: Presentation: 30 minutes; ILOs assessed: 1, 3-6 Oral form: 30 minutes; ILOs assessed:1-4, 6 The course is evaluated on a simple pass/fail basis. No marks are given. | | Evaluation Criteria | The following will be assessed: The correctness and presentation of results, and the correct use of physical quantities and units The correctness of the answers and arguments presented, and the terminology used. For non-attending students the presentation and oral exam must both be passed individually The course is evaluated on a simple pass/fail basis. No marks are given. | | Required Readings | Blackboard and blackboard of course: 42605 Physics. | | Supplementary Readings | Various textbooks can be used as a reference, for example: Physik für Bachelors, Johannes Rybach, Carl Hanser Verlag, 3. Auflage, 2007 (only in German). Mechanics and Thermodynamics, Wolfgang Demtröder, Springer International Publishing, 2017. Electrodynamics and Optics, Wolfgang Demtröder, Springer International Publishing, 2013. Physics for Scientists and Engineers with Modern Physics, Douglas C. Giancoli, Pearson, 4th edition, 2008. | | Further Information | | | Sustainable Development
Goals (SDGs) | |