
Syllabus
Descrizione corso

Titolo insegnamento Formal Languages and Compilers

Codice insegnamento 76214

Titolo aggiuntivo

Settore Scientifico-
Disciplinare

INFO-01/A

Lingua Italiano

Corso di Studio Corso di laurea in Informatica

Altri Corsi di Studio 
(mutuati)

Docenti prof. Alessandro Artale, 
Alessandro.Artale@unibz.it 
https://www.unibz.it/en/faculties/engineering/academic-
staff/person/3026

Assistente

Semestre Secondo semestre

Anno/i di corso 2

CFU 6

Ore didattica frontale 40

Ore di laboratorio 20

Ore di studio individuale 90

Ore di ricevimento previste

L'obiettivo principale è quello di introdurre le nozioni fondamentali 
sui linguaggi formali (classificazione di Chomsky delle lingue, lingue 
regolari, automi, grammatiche libere dal contesto) e di 
comprendere i meccanismi che regolano l'analisi e la sintesi dei 
linguaggi di programmazione. Gli studenti apprenderanno le 
tecniche più importanti per la rappresentazione e la generazione di 
linguaggi (in particolare, linguaggi regolari e context-free). Queste 
tecniche saranno applicate alla costruzione di un compilatore per 
un linguaggio di programmazione. Durante il corso lo studente 
imparerà a costruire le diverse parti di un compilatore, con 

Sintesi contenuti



particolare attenzione agli analizzatori lessicali (con l'uso di Lex 
durante il laboratorio), ai parser (con l'uso di YACC durante il 
laboratorio) e alle basi della generazione del codice.

Argomenti 
dell'insegnamento

- Teoria dei linguaggi formali 
- Linguaggi regolari: automi, espressioni regolari, grammatiche 
regolari 
- Linguaggi liberi dal contesto (macchine a pila) 
- Analisi lessicale e sintattica: Specificazione del lexer, parsing top-
down e bottom-up 
- Regole di analisi semantica per: controllo dei tipi, tabella dei 
simboli e flusso di controllo 
- Generazione di codice intermedio

Parole chiave Teoria Formale dei Linguaggi 
Automi a Stati Finiti 
Grammatiche Context-Free e Parser 
Analisi Semantica e Generazione del codice

Prerequisiti Conoscenza del linguaggio di programmazione C e capacità di 
gestire strutture dinamiche. Esperienza di lavoro in ambiente Linux 
(preferibile)

Insegnamenti propedeutici

Modalità di insegnamento Il corso prevede lezioni frontali, sessioni di laboratorio con esercizi 
di programmazione e progetti di gruppo.

Obbligo di frequenza La frequenza non è obbligatoria ma consigliata. Gli studenti non 
frequentanti devono contattare il docente all'inizio del corso per 
concordare le modalità dello studio indipendente. Le modalità 
d'esame per gli studenti non frequentanti sono le stesse degli 
studenti frequentanti.

Conoscenza e comprensione 
- D1.7 Possedere una solida conoscenza dei fondamenti teorici 
dell'informatica. 
- D1.10 Conoscere i concetti di linguaggi formali e le tecniche di 
compilazione di vari linguaggi di programmazione di alto livello. 
 
Applicare conoscenza e comprensione 
- D2.8 Essere in grado di sviluppare e costruire traduttori e 
compilatori. 
 
Capacità di formulare giudizi 

Obiettivi formativi specifici e 
risultati di apprendimento 
attesi



- D3.1 Essere in grado di raccogliere e interpretare dati utili e di 
giudicare i sistemi informativi e la loro applicabilità. 
- D3.2 Essere in grado di lavorare autonomamente in base al 
proprio livello di conoscenza e comprensione. 
 
Abilità comunicative 
- D4.1 Essere in grado di utilizzare una delle tre lingue, inglese, 
italiano e tedesco, e di utilizzare in modo appropriato termini 
tecnici e di comunicazione. 
- D4.5 Essere in grado di lavorare in team per la realizzazione di 
sistemi informatici. 
 
Capacità di apprendimento 
- D5.1 Avere sviluppato capacità di apprendimento per proseguire 
gli studi con un elevato grado di autonomia.

Obiettivi formativi specifici e 
risultati di apprendimento 
attesi (ulteriori info.)

Modalità di esame La valutazione consiste in un progetto di gruppo e in un esame 
scritto. 
 
Il progetto è volto a valutare l'applicazione delle conoscenze 
acquisite, la capacità di formulare giudizi informati e le abilità 
comunicative, attraverso lo sviluppo collaborativo di un compilatore 
per un piccolo linguaggio di programmazione. Il completamento 
con successo del progetto è un prerequisito per l'ammissione 
all'esame scritto. 
 
L'esame scritto è composto da due parti: la prima si basa su 
argomenti di linguaggio formale e la seconda su argomenti di 
regole lessicali, parser e semantiche. La prima parte sarà offerta 
anche come esame di metà corso. 
 
L'esame scritto comprende domande di verifica, compiti di 
trasferimento delle conoscenze ed esercizi pratici e mira a valutare 
la conoscenza e la comprensione, la capacità di applicare le 
conoscenze e le capacità di apprendimento dello studente.

Il voto finale è composto da un esame scritto del 70% (35% sugli 
argomenti di linguaggio formale e 35% sugli argomenti di regole 

Criteri di valutazione



lessicali, parser e semantiche) e da un progetto sullo sviluppo di 
compilatori del 30%. L'esame scritto sarà valutato in base alla 
correttezza e alla chiarezza delle risposte. Il progetto sarà valutato 
in base alla qualità della soluzione, compresa la complessità e 
l'originalità del linguaggio di programmazione progettato, le 
strutture dati utilizzate per implementare la tabella dei simboli e la 
profondità dell'analisi semantica effettuata. La valutazione del 
progetto sarà valida per tre sessioni d'esame regolari consecutive.

Bibliografia obbligatoria
Alfred V. Aho, Monica S. Lam, Ravi Sethi e Jeffrey D. 
Ullman. Compilatori: Principles, Techniques, and Tools. 
Addison-Wesley Longman Publishing Co., Inc., USA, 2a 
edizione, 2006. ISBN 0321486811. 

•

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 
Introduzione alla teoria degli automi, ai linguaggi e alla 
computazione. Pearson/Addison Wesley, Boston, terza 
edizione, 2007. ISBN 0321455363 9780321455369 
0321462254 9780321462251 0321455371 9780321455376 
0321476174 9780321476173. URL: 
http://infolab.stanford.edu/~ullman/ialc.html. 

•

 

Bibliografia facoltativa
Kenneth C. Louden. Costruzione di compilatori: Principles 
and Practice. PWS Publishing Co., USA, 1997. ISBN 
0534939724. 

•

Steven S. Muchnick. Progettazione e implementazione di 
compilatori avanzati. Morgan Kaufmann Publishers Inc., San 
Francisco, CA, USA, 1998. ISBN 1558603204. 

•

David Watt, Deryck Brown e Robert W. Sebesta. Processori 
di linguaggio di programmazione in Java: Compilatori e 
Interpreti E Concetti di Linguaggi di Programmazione. 
Prentice Hall Press, USA, 2007. ISBN 1408200414. 

•

 

Altre informazioni - C (https://gcc.gnu.org) 
- YACC 
(https://pubs.opengroup.org/onlinepubs/9799919799/utilities/yacc.
html) 
- LEX 
(https://pubs.opengroup.org/onlinepubs/9799919799/utilities/lex.h
tml) 
- Linux (ad esempio, https://ubuntu.com)

Obiettivi di Sviluppo Istruzione di qualità



Sostenibile (SDGs)


