
Syllabus
Course Description

Course Title Formal Languages and Compilers

Course Code 76214

Course Title Additional

Scientific-Disciplinary Sector INFO-01/A

Language Italian

Degree Course Bachelor in Computer Science

Other Degree Courses 
(Loaned)

Lecturers Prof. Alessandro Artale, 
Alessandro.Artale@unibz.it 
https://www.unibz.it/en/faculties/engineering/academic-
staff/person/3026

Teaching Assistant

Semester Second semester

Course Year/s 2

CP 6

Teaching Hours 40

Lab Hours 20

Individual Study Hours 90

Planned Office Hours

The main objective is to introduce the fundamental notions about 
formal languages (Chomsky classification of Languages, Regular 
Languages, Automata, Context Free Grammars) and understand 
the mechanisms governing the analysis and synthesis of 
programming languages. Students will learn the most important 
techniques for the representation and generation of Languages (in 
particular, regular and context-free languages). Those techniques 
will be applied to the construction of a compiler for a programming 
language. During this course the student will learn how to build the 
different parts of a Compiler with a particular emphasis on Lexical 
Analyzers (with the use of Lex during the Lab), Parsers (with the 

Contents Summary



use of YACC during the Lab) and basics of code generation.

Course Topics - Formal language theory 
- Regular languages: automata, regular expressions, regular 
grammars 
- Context free languages (stack machines) 
- Lexical and syntactic analysis: Lexer specification, top-down and 
bottom-up parsing 
- Semantic analysis rules for: type checking, symbol table and 
control flow 
- Intermediate code generation

Keywords Language Theory 
Finite-state Automata 
Context-Free Grammars and Parsers 
Semantic Analysis and Code Generation

Recommended Prerequisites Knowledge of the C programming language and ability to menage 
Dynamic Data Types. Experience working in Linux environment 
(preferred)

Propaedeutic Courses

Teaching Format The course includes frontal lectures, lab sessions with 
programming exercises, and team projects.

Mandatory Attendance Attendance is not compulsory but recommended. Non-attending 
students must contact the lecturer at the start of the course to 
agree on the modalities of the independent study. Exam modalities 
for non-attending students are the same as for attending students.

Knowledge and Understanding 
- D1.7 Possess sound knowledge of the theoretical foundations of 
computer science 
- D1.10 Know the concepts of formal languages, and the 
techniques of compilation of various high level programming 
languages. 
 
Applying knowledge and understanding 
- D2.8 Be able to develop and construct translators and compilers 
 
Ability to make judgments 
- D3.1 Be able to collect and interpret useful data and to judge 
information systems and their applicability. 
- D3.2 Be able to work autonomously according to the own level of 

Specific Educational 
Objectives and Learning 
Outcomes



knowledge and understanding. 
 
Communication skills 
- D4.1 Be able to use one of the three languages English, Italian 
and German, and be able to use technical terms and 
communication appropriately. 
- D4.5 Be able to work in teams for the realization of IT systems. 
 
Learning skills 
- D5.1 Have developed learning capabilities to pursue further 
studies with a high degree of autonomy.

Specific Educational 
Objectives and Learning 
Outcomes (additional info.)

Assessment Assessment consists of a team project and a written exam. 
 
The project is designed to evaluate the application of acquired 
knowledge, the ability to make informed judgments, and 
communication skills, through the collaborative development of a 
compiler for a small programming language. Successful completion 
of the project is a prerequisite for admission to the written exam. 
 
The written exam is composed of two parts: the first part is based 
on Formal Language topics and the second on Lexical, Parser and 
Semantic rules topics. The first part will also be offered as a 
MidTerm exam. 
 
The written exam includes verification questions, knowledge 
transfer tasks, and practical exercises, and is intended to assess 
knowledge and understanding, the ability to apply knowledge, and 
the student’s learning skills.

The final grade is composed of a written exam worth 70% (35% 
on the Formal Language topics and 35% on Lexical, Parser and 
Semantic rules topics) and a project on compiler development 
worth 30%. The written exam will be evaluated based on the 
correctness and clarity of the answers. The project will be assessed 
according to the quality of the solution, including the complexity 
and originality of the designed programming language, the data 
structures used to implement the symbol table, and the depth of 

Evaluation Criteria



the semantic analysis performed. The project evaluation will 
remain valid for three consecutive regular exam sessions.

Required Readings
Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. 
Ullman. Compilers: Principles, Techniques, and Tools. 
Addison-Wesley Longman Publishing Co., Inc., USA, 2nd 
edition, 2006. ISBN 0321486811. 

•

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 
Introduction to Automata Theory, Languages, and 
Computation. Pearson/Addison Wesley, Boston, 3rd edition, 
2007. ISBN 0321455363 9780321455369 0321462254 
9780321462251 0321455371 9780321455376 0321476174 
9780321476173. URL: 
http://infolab.stanford.edu/~ullman/ialc.html. 

•

 

Supplementary Readings
Kenneth C. Louden. Compiler Construction: Principles and 
Practice. PWS Publishing Co., USA, 1997. ISBN 
0534939724. 

•

Steven S. Muchnick. Advanced compiler design and 
implementation. Morgan Kaufmann Publishers Inc., San 
Francisco, CA, USA, 1998. ISBN 1558603204. 

•

David Watt, Deryck Brown, and Robert W. Sebesta. 
Programming Language Processors in Java: Compilers and 
Interpreters AND Concepts of Programming Languages. 
Prentice Hall Press, USA, 2007. ISBN 1408200414. 

•

 

Further Information - C (https://gcc.gnu.org) 
- YACC 
(https://pubs.opengroup.org/onlinepubs/9799919799/utilities/yacc.
html) 
- LEX 
(https://pubs.opengroup.org/onlinepubs/9799919799/utilities/lex.h
tml) 
- Linux (e.g., https://ubuntu.com)

Sustainable Development 
Goals (SDGs)

Quality education


