Syllabus ## Course Description | Course Title | Introduction to Programming | |----------------------------------|--| | Course Code | 76401 | | Course Title Additional | | | Scientific-Disciplinary Sector | INF/01 | | Language | English | | Degree Course | Bachelor in Informatics and Management of Digital Business | | Other Degree Courses
(Loaned) | Bachelor in Computer Science | | Lecturers | Prof. Chiara Ghidini, Chiara.Ghidini@unibz.it https://www.unibz.it/en/faculties/engineering/academic- staff/person/49601 dr. Xiaozhou Li, Xiaozhou.Li@unibz.it https://www.unibz.it/en/faculties/engineering/academic- staff/person/51393 | | Teaching Assistant | | | Semester | First semester | | Course Year/s | 1 | | СР | 9 | | Teaching Hours | 60 | | Lab Hours | 30 | | Individual Study Hours | 135 | | Planned Office Hours | | | Contents Summary | Data types and expressions Basic data structures and generics Functions and parameter passing Conditionals and loops Arrays and collections Classes and objects Basic Input/Output | | | Exception handling | |---------------------------|---| | | Recursion | | Course Topics | Data types and expressions | | | Basic data structures and generics | | | Functions and parameter passing | | | Conditionals and loops | | | Arrays and collections | | | Classes and objects | | | Basic Input/Output | | | Exception handling | | | Recursion | | Keywords | Programming, Algorithms, Java, Object Oriented | | Recommended Prerequisites | There are no specific prerequisites. Basic notions of mathematics and set theory will be used. | | Propaedeutic Courses | | | Teaching Format | Frontal lectures interleaved with exercises, labs with exercises, | | | individual programming projects. | | Mandatory Attendance | Not mandatory, but highly recommended. | | Specific Educational | Type of course: "di base" for L-31 | | Objectives and Learning | Scientific area: "Formazione informatica di base" for L-31 | | Outcomes | | | | The objective of the course is to teach the fundamental principles of programming. We will focus especially on imperative programing as the basic way to learn: (1) the basics of programming and programming elements; (2) the basics of algorithmic thinking; and (3) The basics of writing code. As programming language, we will use a subset of the Java language, mainly restricted to its imperative part. The student will learn how programs can be constructed, and also structured in more files/objects in order to solve a problem. Students will learn how to solve computational problems with well-designed programs that implement effective solutions. The learning will be based on examples, from very simple ones to more complex. | | | We will use the Java programming language and the integrated development environment (IDE), so the goal is to train the student capability to develop java applications in this environment. The final objective for the student is to acquire the ability to solve basic | | | algorithmic problems in a Java-based application. | |-----------------------------|--| | | Knowledge and understanding: | | | D1.3 - Know the basic principles of programming. | | | Applying knowledge and understanding: | | | D2.2 - Ability to solve algorithmic problems using programming | | | methods. | | | D2.17 - Know how to manage small projects for the | | | development of information systems and how coordinate small | | | working groups. | | | Communication skills | | | D4.5 - Ability to collaborate in interdisciplinary teams to | | | achieve IT objectives. | | | Learning skills | | | D5.1 - Learning ability to undertake further studies with a high | | | degree of autonomy. | | Specific Educational | | | Objectives and Learning | | | Outcomes (additional info.) | | | Assessment | The assessment consists of | | | a programming project | | | a final written exam. | | | The project is designed to evaluate learning outcomes related to | | | the application of acquired knowledge, critical thinking, | | | communication, and learning skills. Specifically, students are | | | expected to design a computer application capable of effectively | | | solving a given problem. | | | The written exam assesses knowledge and understanding, the | | | ability to apply that knowledge, and the student's learning skills. It | | | includes verification questions, transfer-of-knowledge questions, | | | and practical exercises. | | Evaluation Criteria | The project accounts for 40% of the final grade (12 points), while | | | the written exam represents 60% (18 points). | | | If the project receives a positive evaluation, the result remains | | | | | | valid for all three regular exam sessions within the academic year. | | | The project will be assessed based on the quality of the solution, including ease of use, the relevance and effectiveness of the implemented functions, and the quality of the code, in line with the principles discussed during the lectures. Written exam answers will be evaluated based on their correctness | |---|--| | | and clarity. | | Required Readings | John Lewis and William Loftus, Java Software Solutions, Pearson, 2018. | | | Kathy Sierra, Bert Bates, Trisha Gee, Head First Java, 3rd Edition. O'Reilly Media, Inc. | | | Cay S. Horstmann, Brief Java: Early Objects. Wiley | | | Subject Librarian: David Gebhardi, <u>David.Gebhardi@unibz.it</u> | | Supplementary Readings | The Java Tutorials: https://docs.oracle.com/javase/tutorial/ | | Further Information | Software used: IntelliJ | | Sustainable Development
Goals (SDGs) | Industry, innovation and infrastructure, Quality education |