
Syllabus
Course Description

Course Title Data Structures and Algorithms

Course Code 76243

Course Title Additional

Scientific-Disciplinary Sector INFO-01/A

Language English

Degree Course Bachelor in Computer Science

Other Degree Courses 
(Loaned)

Lecturers Prof. Werner Nutt, 
Werner.Nutt@unibz.it 
https://www.unibz.it/en/faculties/engineering/academic-
staff/person/7380 
dr. Tiziano Dalmonte, 
Tiziano.Dalmonte@unibz.it 
https://www.unibz.it/en/faculties/engineering/academic-
staff/person/47069

Teaching Assistant Dott. Anton Gnatenko 
Dott. Pavel Merinov

Semester First semester

Course Year/s 2

CP 9

Teaching Hours 60

Lab Hours 30

Individual Study Hours 135

Planned Office Hours 18

By the end of the course, students will be able to formulate 
algorithmic problems and identify such problems within 
applications. They will gain a solid understanding of standard data 
structures and the algorithmic techniques used to solve related 
problems. Students will also understand the interplay between 
algorithmic approaches and the choice of suitable data structures. 

Contents Summary



In addition, they will learn how to verify the correctness of 
algorithms and analyse their time and space complexity. Finally, 
students will be able to compare alternative algorithms in terms of 
their suitability for a given application.

Course Topics - Design Principles: Problem reduction via recursion 
- Searching and Sorting 
- Correctness: Loop invariants, termination 
- Complexity: Asymptotic analysis 
- Divide and Conquer 
- Pointers, dynamic data structures, linked lists 
- Abstract data types: stacks, queues, priority queues, maps 
- Binary trees, red-black trees 
- Graph algorithms

Keywords Algorithms, Data Structures, Algorithmic Complexity, Correctness 
of Algorithms, Design of Algorithms

Recommended Prerequisites The course requires introductory Java programming skills and basic 
knowledge of sets, functions, and calculus.

Propaedeutic Courses

Teaching Format The course combines lectures, lab group sessions led by teaching 
instructors, and biweekly coursework assignments. 
In the lectures, the instructor introduces new concepts and 
techniques through board presentations and short in-class 
exercises. 
The assignments give students the opportunity to consolidate 
these concepts by applying them to selected problems. Students 
also analyse the performance of their implementations and 
compare the results with theoretical predictions. 
In the lab groups, students discuss possible approaches to the 
assignment tasks with the instructors and compare alternative 
solutions. They also work on additional problems, independent of 
the assignments, to deepen their understanding of the material 
covered in the lectures.

Attendance is not compulsory but strongly recommended. Lectures 
include board presentations, exercises, and discussions designed to 
foster algorithmic thinking—a skill best developed through practice. 
All materials and assignments are available on the OLE page; 
however, slides and notes alone are not sufficient for mastering 
the course. Regular attendance, active participation in exercises, 

Mandatory Attendance



and timely submission of coursework are key to success.

Specific Educational 
Objectives and Learning 
Outcomes

Knowledge and Understanding 
- D1.3 Have a solid knowledge of the most important data 
structures and programming techniques. 
- D1.5 Know the concepts of complexity of algorithms and data 
structures 
- D1.6 Have a solid knowledge of the most important algorithms 
for searching and manipulating common data structures and of 
their complexity 
 
Applying knowledge and understanding 
- D2.3 Be able to solve problems using programming 
methodologies. 
- D2.6 Be able to analyze and measure size, complexity and critical 
aspects of algorithms and data structures 
 
Ability to make judgments 
- D3.1 Be able to collect and interpret useful data and to judge 
information systems and their applicability. 
- D3.2 Be able to work autonomously according to the own level of 
knowledge and understanding. 
- D3.6 Be able to collect useful data about the performance of 
algorithms and to judge which algorithm is most suitable for a 
given task 
 
Communication skills 
- D4.1 Be able to use one of the three languages English, Italian 
and German, and be able to use technical terms and 
communication appropriately. 
- D4.4 Be able to structure and write technical documentation. 
 
Learning skills 
- D5.1 Have developed learning capabilities to pursue further 
studies with a high degree of autonomy. 
- D5.3 Be able to follow the fast technological evolution and to 
learn cutting edge IT technologies and innovative aspects of last 
generation information systems.

Specific Educational 
Objectives and Learning 

Algorithm design as a primary goal: Students will not only become 
familiar with existing algorithms but above all learn systematic 



Outcomes (additional info.) methods for designing new algorithms to solve previously unseen 
problems. 
 
Heuristic design principles: Students will learn to design algorithms 
incrementally by building and extending partial solutions while 
scanning input data, making use of auxiliary information about the 
already processed part of the input. 
 
Loop invariants as a design tool: Students will learn to formulate 
and use loop invariants systematically, both as a guiding principle 
for algorithm design and as a means of ensuring correctness.

Assessment The assessment is based on a written final exam, a mock exam, 
and coursework assignments. 
 
1. The written exam consists of several questions. Each question 
describes an algorithmic problem and provides examples of input 
and expected output. Students are expected to outline solution 
ideas, present an algorithm in pseudocode, and analyze its running 
time. The questions vary in difficulty. Passing the written exam is 
mandatory. 
 
2. The mock exam has the same structure as the written exam but 
is shorter and limited to the content of the first half of the course. 
It allows students to familiarize themselves with the exam format 
and expectations. 
 
3. The assignments are more extensive and challenging. They 
typically require both a solution idea and a Java implementation. 
The code is submitted via the Codebase platform, where it is 
automatically tested against unit tests. Assignments provide 
practice in applying course concepts to more demanding problems. 
 
Marks are valid for the three exam sessions following the teaching 
of the course. The coursework and the mock exam are optional. 
Weighting and calculation of the final mark are specified in 
Evaluation criteria.

The final grade is based on coursework assignments (45%), a 
mock exam (5%), and the written final exam (50%). 
 

Evaluation Criteria



To pass the course, students must pass the written exam. In this 
exam, they are required to apply techniques taught in the course 
to given settings and to design algorithms for new problems. The 
algorithms must be analyzed with respect to correctness and 
efficiency. Answers are marked according to their correctness, the 
suitability of the proposed algorithms, and the validity and clarity 
of the analysis. The mock exam follows the same evaluation 
criteria as the written exam. 
 
In the coursework assignments, students develop solutions to 
algorithmic problems and analyze them in terms of correctness and 
running time. These exercises are assessed on correctness, 
efficiency, and the validity of the analysis. In addition, experiments 
require students to implement variants of algorithms and to 
determine under which conditions each variant performs best. The 
experiments are assessed on the appropriateness of the 
experimental design, the quality of the measurements, and the 
validity of the conclusions drawn.

Required Readings
Thomas H. Cormen. Introduction to Algorithms. The MIT Press, 
Cambridge, Massachusetts London, England, 3rd edition, January 
2009. ISBN 978-0-262-53305-8. 

Supplementary Readings
Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: 
The Basic Toolbox. Springer, Berlin Heidelberg, 2008 edition, 
November 2010. ISBN 978-3-642-09682-2. 

Further Information Java (https://openjdk.org)

Sustainable Development 
Goals (SDGs)

Quality education


